Modelling the impact of disease outbreaks on the international crude oil supply chain using Random Forest regression

供应链 回归分析 消费(社会学) 随机森林 计量经济学 回归 爆发 计算机科学 经济 统计 业务 营销 数学 医学 社会学 病毒学 机器学习 社会科学
作者
Ganisha Nayanathara Premarathna Athaudage,H. Niles Perera,P. T. R. S. Sugathadasa,M. Mavin De Silva,Oshadhi K. Herath
出处
期刊:International Journal of Energy Sector Management [Emerald Publishing Limited]
卷期号:17 (6): 1187-1209 被引量:5
标识
DOI:10.1108/ijesm-11-2021-0019
摘要

Purpose The crude oil supply chain (COSC) is one of the most complex and largest supply chains in the world. It is easily vulnerable to extreme events. Recently, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (often known as COVID-19) pandemic created a massive imbalance between supply and demand which caused significant price fluctuations. The purpose of this study is to explore the influential factors affecting the international COSC in terms of consumption, production and price. Furthermore, it develops a model to predict the international crude oil price during disease outbreaks using Random Forest (RF) regression. Design/methodology/approach This study uses both qualitative and quantitative approaches. A qualitative study is conducted using a literature review to explore the influential factors on COSC. All the data are extracted from Web sources. In addition to COVID-19, four other diseases are considered to optimize the accuracy of predictive results. A principal component analysis is deployed to reduce the number of variables. A forecasting model is developed using RF regression. Findings The findings of the qualitative analysis characterize the factors that influence international COSC. The findings of quantitative analysis emphasize that production and consumption have a higher contribution to the variance of the data set. Also, this study found that the impact caused to crude oil price varies with the region. Most importantly, the model introduced using the RF technique provides a high predictive ability in short horizons such as infectious diseases. This study delivers future directions and insights to researchers and practitioners to expand the study further. Originality/value This is one of the few available pieces of research which uses the RF method in the context of crude oil price forecasting. Additionally, this study examines international COSC in the events of emergencies, specifically disease outbreaks using machine learning techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小丁发布了新的文献求助10
刚刚
Chouvikin完成签到,获得积分10
1秒前
姜呱呱呱发布了新的文献求助10
1秒前
1秒前
含蓄妖丽发布了新的文献求助10
2秒前
2秒前
ding应助陈陈采纳,获得10
2秒前
2秒前
2秒前
微不足道发布了新的文献求助10
3秒前
eff完成签到,获得积分20
3秒前
bkagyin应助淡定的灵雁采纳,获得10
3秒前
魏芸芸完成签到,获得积分10
3秒前
xiangqing完成签到 ,获得积分10
3秒前
CHEE完成签到 ,获得积分10
3秒前
3秒前
布洛芬完成签到,获得积分10
4秒前
4秒前
慧眼痴心完成签到,获得积分10
4秒前
怡然平萱发布了新的文献求助10
4秒前
小路发布了新的文献求助50
4秒前
迷人外绣发布了新的文献求助30
5秒前
简单发布了新的文献求助10
5秒前
大个应助豆豆豆莎包采纳,获得10
6秒前
虚幻迎南发布了新的文献求助10
6秒前
6秒前
6秒前
元羞花发布了新的文献求助10
6秒前
7秒前
充电宝应助qqq采纳,获得10
7秒前
7秒前
TQY发布了新的文献求助10
7秒前
左右兮完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
Ava应助显隐采纳,获得10
8秒前
程爽发布了新的文献求助10
9秒前
klawfuio发布了新的文献求助10
9秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009834
求助须知:如何正确求助?哪些是违规求助? 3549753
关于积分的说明 11303647
捐赠科研通 3284309
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886367
科研通“疑难数据库(出版商)”最低求助积分说明 811406