Modelling the impact of disease outbreaks on the international crude oil supply chain using Random Forest regression

供应链 回归分析 消费(社会学) 随机森林 计量经济学 回归 爆发 计算机科学 经济 统计 业务 营销 数学 医学 社会学 病毒学 机器学习 社会科学
作者
Ganisha Nayanathara Premarathna Athaudage,H. Niles Perera,P. T. R. S. Sugathadasa,M. Mavin De Silva,Oshadhi K. Herath
出处
期刊:International Journal of Energy Sector Management [Emerald (MCB UP)]
卷期号:17 (6): 1187-1209 被引量:5
标识
DOI:10.1108/ijesm-11-2021-0019
摘要

Purpose The crude oil supply chain (COSC) is one of the most complex and largest supply chains in the world. It is easily vulnerable to extreme events. Recently, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (often known as COVID-19) pandemic created a massive imbalance between supply and demand which caused significant price fluctuations. The purpose of this study is to explore the influential factors affecting the international COSC in terms of consumption, production and price. Furthermore, it develops a model to predict the international crude oil price during disease outbreaks using Random Forest (RF) regression. Design/methodology/approach This study uses both qualitative and quantitative approaches. A qualitative study is conducted using a literature review to explore the influential factors on COSC. All the data are extracted from Web sources. In addition to COVID-19, four other diseases are considered to optimize the accuracy of predictive results. A principal component analysis is deployed to reduce the number of variables. A forecasting model is developed using RF regression. Findings The findings of the qualitative analysis characterize the factors that influence international COSC. The findings of quantitative analysis emphasize that production and consumption have a higher contribution to the variance of the data set. Also, this study found that the impact caused to crude oil price varies with the region. Most importantly, the model introduced using the RF technique provides a high predictive ability in short horizons such as infectious diseases. This study delivers future directions and insights to researchers and practitioners to expand the study further. Originality/value This is one of the few available pieces of research which uses the RF method in the context of crude oil price forecasting. Additionally, this study examines international COSC in the events of emergencies, specifically disease outbreaks using machine learning techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
慕青应助天晴采纳,获得10
3秒前
柯伊达发布了新的文献求助10
4秒前
黎黎发布了新的文献求助10
4秒前
bdhdbb完成签到,获得积分10
6秒前
科研通AI5应助ClarkLee采纳,获得10
6秒前
李健应助王子娇采纳,获得10
7秒前
7秒前
喆喆吖完成签到,获得积分20
7秒前
9秒前
缺水哥完成签到,获得积分10
9秒前
Owen应助容荣采纳,获得10
10秒前
shyの煜完成签到 ,获得积分10
11秒前
11秒前
12秒前
12秒前
科目三应助222采纳,获得10
12秒前
缺水哥发布了新的文献求助10
13秒前
15秒前
稀饭发布了新的文献求助10
15秒前
可爱的田果果完成签到,获得积分20
15秒前
新的心跳发布了新的文献求助10
16秒前
萌新发布了新的文献求助10
16秒前
18秒前
天才阿博完成签到 ,获得积分10
18秒前
LIn发布了新的文献求助10
19秒前
翔翔超人发布了新的文献求助10
20秒前
ZHUTOU完成签到,获得积分20
21秒前
小汁儿完成签到,获得积分20
22秒前
24秒前
王子娇发布了新的文献求助10
25秒前
柯伊达发布了新的文献求助10
25秒前
桐桐应助科研通管家采纳,获得10
27秒前
Jasper应助科研通管家采纳,获得10
27秒前
李健应助科研通管家采纳,获得10
27秒前
科研通AI5应助科研通管家采纳,获得50
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
小二郎应助科研通管家采纳,获得10
27秒前
Lucas应助科研通管家采纳,获得10
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3524978
求助须知:如何正确求助?哪些是违规求助? 3105777
关于积分的说明 9276213
捐赠科研通 2803069
什么是DOI,文献DOI怎么找? 1538346
邀请新用户注册赠送积分活动 716205
科研通“疑难数据库(出版商)”最低求助积分说明 709290