供应链
回归分析
消费(社会学)
随机森林
计量经济学
回归
爆发
计算机科学
经济
统计
业务
营销
数学
医学
社会学
病毒学
机器学习
社会科学
作者
Ganisha Nayanathara Premarathna Athaudage,H. Niles Perera,P. T. R. S. Sugathadasa,M. Mavin De Silva,Oshadhi K. Herath
出处
期刊:International Journal of Energy Sector Management
[Emerald (MCB UP)]
日期:2022-12-20
卷期号:17 (6): 1187-1209
被引量:5
标识
DOI:10.1108/ijesm-11-2021-0019
摘要
Purpose The crude oil supply chain (COSC) is one of the most complex and largest supply chains in the world. It is easily vulnerable to extreme events. Recently, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (often known as COVID-19) pandemic created a massive imbalance between supply and demand which caused significant price fluctuations. The purpose of this study is to explore the influential factors affecting the international COSC in terms of consumption, production and price. Furthermore, it develops a model to predict the international crude oil price during disease outbreaks using Random Forest (RF) regression. Design/methodology/approach This study uses both qualitative and quantitative approaches. A qualitative study is conducted using a literature review to explore the influential factors on COSC. All the data are extracted from Web sources. In addition to COVID-19, four other diseases are considered to optimize the accuracy of predictive results. A principal component analysis is deployed to reduce the number of variables. A forecasting model is developed using RF regression. Findings The findings of the qualitative analysis characterize the factors that influence international COSC. The findings of quantitative analysis emphasize that production and consumption have a higher contribution to the variance of the data set. Also, this study found that the impact caused to crude oil price varies with the region. Most importantly, the model introduced using the RF technique provides a high predictive ability in short horizons such as infectious diseases. This study delivers future directions and insights to researchers and practitioners to expand the study further. Originality/value This is one of the few available pieces of research which uses the RF method in the context of crude oil price forecasting. Additionally, this study examines international COSC in the events of emergencies, specifically disease outbreaks using machine learning techniques.
科研通智能强力驱动
Strongly Powered by AbleSci AI