Modelling the impact of disease outbreaks on the international crude oil supply chain using Random Forest regression

供应链 回归分析 消费(社会学) 随机森林 计量经济学 回归 爆发 计算机科学 经济 统计 业务 营销 数学 医学 社会学 病毒学 机器学习 社会科学
作者
Ganisha Nayanathara Premarathna Athaudage,H. Niles Perera,P. T. R. S. Sugathadasa,M. Mavin De Silva,Oshadhi K. Herath
出处
期刊:International Journal of Energy Sector Management [Emerald (MCB UP)]
卷期号:17 (6): 1187-1209 被引量:5
标识
DOI:10.1108/ijesm-11-2021-0019
摘要

Purpose The crude oil supply chain (COSC) is one of the most complex and largest supply chains in the world. It is easily vulnerable to extreme events. Recently, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (often known as COVID-19) pandemic created a massive imbalance between supply and demand which caused significant price fluctuations. The purpose of this study is to explore the influential factors affecting the international COSC in terms of consumption, production and price. Furthermore, it develops a model to predict the international crude oil price during disease outbreaks using Random Forest (RF) regression. Design/methodology/approach This study uses both qualitative and quantitative approaches. A qualitative study is conducted using a literature review to explore the influential factors on COSC. All the data are extracted from Web sources. In addition to COVID-19, four other diseases are considered to optimize the accuracy of predictive results. A principal component analysis is deployed to reduce the number of variables. A forecasting model is developed using RF regression. Findings The findings of the qualitative analysis characterize the factors that influence international COSC. The findings of quantitative analysis emphasize that production and consumption have a higher contribution to the variance of the data set. Also, this study found that the impact caused to crude oil price varies with the region. Most importantly, the model introduced using the RF technique provides a high predictive ability in short horizons such as infectious diseases. This study delivers future directions and insights to researchers and practitioners to expand the study further. Originality/value This is one of the few available pieces of research which uses the RF method in the context of crude oil price forecasting. Additionally, this study examines international COSC in the events of emergencies, specifically disease outbreaks using machine learning techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
樂酉完成签到 ,获得积分10
1秒前
2秒前
2秒前
3秒前
科研通AI2S应助初余采纳,获得10
3秒前
3秒前
星辰大海应助yy采纳,获得10
3秒前
复杂的凝冬完成签到,获得积分10
4秒前
LC1028完成签到 ,获得积分10
4秒前
evy完成签到,获得积分10
5秒前
伶俐的小卓完成签到,获得积分20
5秒前
璇璇完成签到 ,获得积分10
6秒前
6秒前
共享精神应助莉莉采纳,获得10
6秒前
楠瓜发布了新的文献求助10
8秒前
坦率雁卉完成签到,获得积分10
8秒前
叮叮叮发布了新的文献求助10
8秒前
刘闹闹完成签到 ,获得积分10
9秒前
9秒前
树池应助juphen2采纳,获得10
9秒前
superLmy完成签到 ,获得积分10
10秒前
ding应助吴丹采纳,获得20
10秒前
apeach发布了新的文献求助10
11秒前
11秒前
好名字完成签到 ,获得积分10
12秒前
13秒前
惜惜完成签到,获得积分10
13秒前
兔图图完成签到 ,获得积分10
14秒前
含蓄的含蕾完成签到,获得积分10
15秒前
cecilycen完成签到,获得积分10
15秒前
1234完成签到 ,获得积分10
15秒前
坦率傲玉完成签到 ,获得积分10
16秒前
天天向上完成签到,获得积分10
16秒前
Barry完成签到,获得积分10
17秒前
绿色催化完成签到,获得积分10
17秒前
18秒前
汉堡包应助生菜采纳,获得10
18秒前
冷静的缘分完成签到 ,获得积分10
19秒前
wang完成签到,获得积分10
19秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 800
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3085640
求助须知:如何正确求助?哪些是违规求助? 2738486
关于积分的说明 7550501
捐赠科研通 2388341
什么是DOI,文献DOI怎么找? 1266369
科研通“疑难数据库(出版商)”最低求助积分说明 613498
版权声明 598591