Cattle body detection based on YOLOv5-ASFF for precision livestock farming

牲畜 人工智能 计算机科学 模式识别(心理学) 稳健性(进化) 领域(数学) 计算机视觉 地理 数学 林业 生物化学 化学 纯数学 基因
作者
Yongliang Qiao,Yangyang Guo,Dongjian He
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:204: 107579-107579 被引量:47
标识
DOI:10.1016/j.compag.2022.107579
摘要

Precision livestock farming is a hot topic in the field of agriculture at present. However, due to the diversity of breeding environments, the current intelligent monitoring of animal information still faces challenges. In this study, a YOLOv5-ASFF object detection model was proposed to detect cattle body parts (e.g. individual, head, legs) in complex scenes. The proposed YOLOv5-ASFF consists of two components: YOLOv5 responsible for extracting multi-scale features from sample images, while ASFF was used to adaptively learn fused spatial weights for each scale feature map and fully acquire the features. In this way, the cattle area detection was realized and the generalization of detection model was improved. To verify the applicability and robustness of YOLOv5-ASFF, a challenging dataset consisting of cattle (cow and beef) with complex environments (e.g. different lighting, occlusion, different depths of field, multiple targets and small targets) was constructed for experimental testing. The proposed method based on YOLOv5-ASFFachieved a precision of 96.2%, a recall of 92%, an F1 score of 94.1%, and an [email protected] of 94.7% on this dataset, which outperformed Faster R-CNN, Cascade R-CNN, SSD, YOLOv3 and YOLOv5s. Experimental results showed that the YOLOv5-ASFF method could fully learn more animal biometric visual features, thereby improving the performance of cattle detection model, especially the detection of key parts. Overall, the proposed deep learning-based cattle detection method is favorable for long-term autonomous cattle monitoring and management in intelligent livestock farming.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢乐的兔子完成签到,获得积分10
2秒前
haha发布了新的文献求助10
4秒前
guyong发布了新的文献求助10
4秒前
9秒前
科研通AI2S应助我唉科研采纳,获得10
15秒前
李健的小迷弟应助米六采纳,获得10
15秒前
七七完成签到 ,获得积分10
17秒前
18秒前
英俊的铭应助科研通管家采纳,获得10
18秒前
大模型应助科研通管家采纳,获得10
19秒前
membrane应助科研通管家采纳,获得10
19秒前
今后应助科研通管家采纳,获得10
19秒前
共享精神应助科研通管家采纳,获得10
19秒前
大模型应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
充电宝应助科研通管家采纳,获得10
19秒前
19秒前
慕青应助科研通管家采纳,获得10
19秒前
田様应助科研通管家采纳,获得10
19秒前
FashionBoy应助科研通管家采纳,获得10
20秒前
天天快乐应助科研通管家采纳,获得10
20秒前
20秒前
membrane应助科研通管家采纳,获得10
20秒前
20秒前
Akim应助科研通管家采纳,获得10
20秒前
泽锦臻完成签到 ,获得积分10
22秒前
LIVE完成签到,获得积分10
24秒前
小菜鸡完成签到 ,获得积分10
24秒前
不是山谷完成签到,获得积分10
25秒前
阳光刺眼完成签到 ,获得积分10
25秒前
寻人不见完成签到,获得积分20
29秒前
zhang完成签到,获得积分10
29秒前
PDIF-CN2完成签到,获得积分10
30秒前
晚灯君完成签到 ,获得积分10
32秒前
33秒前
枫枫829完成签到 ,获得积分10
34秒前
哔噗哔噗完成签到 ,获得积分10
35秒前
爱芮芮完成签到,获得积分20
35秒前
寻人不见发布了新的文献求助10
36秒前
高分求助中
Effect of reactor temperature on FCC yield 1500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition 800
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Production Logging: Theoretical and Interpretive Elements 555
Mesopotamian Divination Texts: Conversing with the Gods 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3278357
求助须知:如何正确求助?哪些是违规求助? 2916837
关于积分的说明 8383509
捐赠科研通 2587595
什么是DOI,文献DOI怎么找? 1409671
科研通“疑难数据库(出版商)”最低求助积分说明 657455
邀请新用户注册赠送积分活动 638491