Cattle body detection based on YOLOv5-ASFF for precision livestock farming

牲畜 人工智能 计算机科学 模式识别(心理学) 稳健性(进化) 领域(数学) 计算机视觉 地理 数学 林业 生物化学 基因 化学 纯数学
作者
Yongliang Qiao,Yangyang Guo,Dongjian He
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:204: 107579-107579 被引量:47
标识
DOI:10.1016/j.compag.2022.107579
摘要

Precision livestock farming is a hot topic in the field of agriculture at present. However, due to the diversity of breeding environments, the current intelligent monitoring of animal information still faces challenges. In this study, a YOLOv5-ASFF object detection model was proposed to detect cattle body parts (e.g. individual, head, legs) in complex scenes. The proposed YOLOv5-ASFF consists of two components: YOLOv5 responsible for extracting multi-scale features from sample images, while ASFF was used to adaptively learn fused spatial weights for each scale feature map and fully acquire the features. In this way, the cattle area detection was realized and the generalization of detection model was improved. To verify the applicability and robustness of YOLOv5-ASFF, a challenging dataset consisting of cattle (cow and beef) with complex environments (e.g. different lighting, occlusion, different depths of field, multiple targets and small targets) was constructed for experimental testing. The proposed method based on YOLOv5-ASFFachieved a precision of 96.2%, a recall of 92%, an F1 score of 94.1%, and an [email protected] of 94.7% on this dataset, which outperformed Faster R-CNN, Cascade R-CNN, SSD, YOLOv3 and YOLOv5s. Experimental results showed that the YOLOv5-ASFF method could fully learn more animal biometric visual features, thereby improving the performance of cattle detection model, especially the detection of key parts. Overall, the proposed deep learning-based cattle detection method is favorable for long-term autonomous cattle monitoring and management in intelligent livestock farming.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
影子芳香完成签到 ,获得积分10
刚刚
韦老虎完成签到,获得积分20
1秒前
林家小弟完成签到 ,获得积分10
1秒前
稳重紫蓝完成签到 ,获得积分10
2秒前
sen123完成签到,获得积分10
2秒前
sci完成签到 ,获得积分10
3秒前
gougou完成签到,获得积分10
4秒前
羊二呆完成签到,获得积分10
7秒前
球球发布了新的文献求助10
8秒前
椿人完成签到 ,获得积分10
9秒前
Cry_Man完成签到 ,获得积分10
11秒前
路明非完成签到,获得积分10
13秒前
13秒前
wddx完成签到,获得积分10
14秒前
LFY完成签到 ,获得积分10
14秒前
研友_VZG7GZ应助以筱采纳,获得10
14秒前
jwx完成签到,获得积分0
15秒前
小亮哈哈完成签到,获得积分0
17秒前
529完成签到 ,获得积分10
17秒前
17秒前
罗实完成签到 ,获得积分10
20秒前
21秒前
舟遥遥完成签到,获得积分10
25秒前
ahui完成签到 ,获得积分10
26秒前
Present完成签到,获得积分10
26秒前
chuzihang完成签到 ,获得积分10
27秒前
27秒前
夜雨诗意完成签到,获得积分10
29秒前
往返完成签到,获得积分10
30秒前
小唐完成签到,获得积分10
31秒前
章鱼完成签到,获得积分10
34秒前
松松包完成签到,获得积分10
34秒前
36秒前
星辰大海应助王珺采纳,获得10
36秒前
marc107完成签到,获得积分10
36秒前
阜睿完成签到 ,获得积分10
37秒前
乐乐乐乐乐乐完成签到,获得积分10
40秒前
41秒前
41秒前
欧欧欧导完成签到,获得积分10
43秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968578
求助须知:如何正确求助?哪些是违规求助? 3513400
关于积分的说明 11167585
捐赠科研通 3248853
什么是DOI,文献DOI怎么找? 1794499
邀请新用户注册赠送积分活动 875131
科研通“疑难数据库(出版商)”最低求助积分说明 804664