Application of a Dynamic Line Graph Neural Network for Intrusion Detection With Semisupervised Learning

计算机科学 入侵检测系统 人工智能 图形 异常检测 深度学习 快照(计算机存储) 数据挖掘 模式识别(心理学) 机器学习 理论计算机科学 操作系统
作者
Guanghan Duan,Hongwu Lv,Huiqiang Wang,Guangsheng Feng
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 699-714 被引量:48
标识
DOI:10.1109/tifs.2022.3228493
摘要

Deep learning (DL) greatly enhances binary anomaly detection capabilities through effective statistical network characterization; nevertheless, the intrusion class differentiation performance is still insufficient. Two related challenges have not been fully explored. 1) Statistical attack characteristics are overemphasized while ignoring inherent attack topologies; sequence features are extracted from whole traffic flows, but the interaction evolution of each IP pair over time is rarely considered, such as in long short-term memory (LSTM) and gated recurrent units (GRUs). 2) Meeting the need for many high-quality labeled data samples is an expensive and labor-intensive task in large-scale, complex, and heterogeneous networks. To address these issues, we propose a dynamic line graph neural network (DLGNN)-based intrusion detection method with semisupervised learning. Our model converts network traffic into a series of spatiotemporal graphs. A dynamic GNN (DGNN) is employed to extract spatial information from each discrete snapshot and capture the contextual evolution of communication between IP pairs through consecutive snapshots. Moreover, a line graph realizes edge embedding expressions corresponding to network communications and strengthens the message aggregation ability of graph convolution. Experiments on 6 novel datasets demonstrate that our approach achieves 98.15–99.8% accuracy in abnormality detection with fewer labeled samples. Meanwhile, state-of-the-art multiclass performance is achieved, e.g., the average detection accuracy for DDoS across the 6 datasets reaches 95.32%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助炸鱼饭采纳,获得10
刚刚
1秒前
1秒前
Rocky发布了新的文献求助10
2秒前
lyl19880908应助bofu采纳,获得10
2秒前
干羞花发布了新的文献求助30
3秒前
4秒前
4秒前
科文发布了新的文献求助10
4秒前
尊敬的惠发布了新的文献求助10
6秒前
颜卿发布了新的文献求助10
6秒前
lynn完成签到,获得积分10
8秒前
llllllll完成签到,获得积分10
8秒前
wanci应助shengdong采纳,获得30
8秒前
小菜鸟完成签到 ,获得积分10
8秒前
顾矜应助火星上的幻梦采纳,获得10
9秒前
GAME发布了新的文献求助10
9秒前
asdfqwer应助君莫笑采纳,获得10
9秒前
wy.he应助张晶晶采纳,获得20
9秒前
Hello应助bofu采纳,获得10
10秒前
如果完成签到,获得积分10
11秒前
11秒前
Singularity应助尊敬的惠采纳,获得10
11秒前
顾矜应助菠萝医生采纳,获得10
11秒前
11秒前
Persist6578完成签到 ,获得积分10
12秒前
我是老大应助Kkkk采纳,获得10
14秒前
少年完成签到,获得积分10
15秒前
单纯的易文完成签到 ,获得积分10
16秒前
海城好人完成签到,获得积分10
16秒前
Owen应助完美妙海采纳,获得10
17秒前
聂先生发布了新的文献求助30
17秒前
18秒前
bofu发布了新的文献求助10
18秒前
典雅的俊驰应助123456采纳,获得10
18秒前
所所应助junlin采纳,获得10
19秒前
19秒前
19秒前
Wally完成签到,获得积分10
19秒前
Tal完成签到,获得积分10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3701187
求助须知:如何正确求助?哪些是违规求助? 3251544
关于积分的说明 9874989
捐赠科研通 2963549
什么是DOI,文献DOI怎么找? 1625157
邀请新用户注册赠送积分活动 769822
科研通“疑难数据库(出版商)”最低求助积分说明 742564