Modeling the potential impacts of automated vehicles on pollutant emissions under different scenarios of a test track

温室气体 燃料效率 汽车工程 加速度 环境科学 污染物 空气污染 环境工程 模拟 工程类 运输工程 物理 生物 经典力学 有机化学 化学 生态学
作者
Zelalem Birhanu Biramo,Anteneh Afework Mekonnen
出处
期刊:Environmental Systems Research [Springer Nature]
卷期号:11 (1) 被引量:7
标识
DOI:10.1186/s40068-022-00276-2
摘要

Abstract One of the significant sources of air pollution and greenhouse gas emissions is the road transportation sector. These emissions are worsened by driving behaviors and network conditions. It is common knowledge that experienced and inexperienced drivers behave differently when operating vehicles. Given the same vehicle in a different timeframe, the drivers’ reactions to similar situations vary, which has a significant influence on the emissions and fuel consumption as their use of acceleration and speed differ. Because the driving patterns of automated vehicles are programmable and provide a platform for smooth driving situations, it is predicted that deploying them might potentially reduce fuel consumption, particularly in urban areas with given traffic situations. This study’s goal is to examine how different degrees of automated vehicles behave when it comes to emissions and how accelerations affect that behavior. Furthermore, the total aggregated emissions on the synthesized urban network are evaluated and compared to legacy vehicles. The emission measuring model is based on the Handbook Emission Factors for Road Transport (HBEFA)3 and is utilized with the Simulation of Urban Mobility (SUMO) microscopic simulation software. The results demonstrate that acceleration value is strongly correlated with individual vehicle emissions. Although the ability of automated vehicles (AVs) to swiftly achieve higher acceleration values has an adverse effect on emissions reduction, it was compensated by the rate of accelerations, which decreases as the automation level increases. According to the simulation results, automated vehicles can reduce carbon monoxide (CO) emissions by 38.56%, carbon dioxide (CO 2 ) emissions by 17.09%, hydrocarbons (HC) emissions by 36.3%, particulate matter (PM x ) emissions by 28.12%, nitrogen oxides (NO x ) emissions by 19.78% in the most optimistic scenario (that is, when all vehicles are replaced by the upper bound automated vehicles) in the network level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷人的冷亦完成签到,获得积分10
刚刚
pcr163应助21采纳,获得200
1秒前
Cherish完成签到,获得积分10
1秒前
上官若男应助kk采纳,获得10
2秒前
2秒前
Liu发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
5秒前
王同学完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
9秒前
在下雷老虎完成签到,获得积分10
9秒前
10秒前
Charon发布了新的文献求助10
11秒前
12秒前
13秒前
13秒前
SSSSSS发布了新的文献求助10
14秒前
十万完成签到,获得积分10
14秒前
14秒前
宾师傅发布了新的文献求助10
15秒前
15秒前
15秒前
啧啧zeze发布了新的文献求助10
15秒前
小酒窝发布了新的文献求助10
16秒前
shanage发布了新的文献求助10
17秒前
18秒前
风趣的烨磊完成签到,获得积分10
19秒前
xixihaha完成签到,获得积分10
19秒前
星辰大海应助叶觅云采纳,获得10
19秒前
思源应助科研通管家采纳,获得10
20秒前
可爱的函函应助星川采纳,获得10
20秒前
NexusExplorer应助科研通管家采纳,获得10
20秒前
20秒前
linty应助科研通管家采纳,获得10
20秒前
哎嘿应助科研通管家采纳,获得10
20秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156110
求助须知:如何正确求助?哪些是违规求助? 2807513
关于积分的说明 7873605
捐赠科研通 2465844
什么是DOI,文献DOI怎么找? 1312456
科研通“疑难数据库(出版商)”最低求助积分说明 630107
版权声明 601905