Polarized Micro-Raman Spectroscopy and 2D Convolutional Neural Network Applied to Structural Analysis and Discrimination of Breast Cancer

拉曼光谱 乳腺癌 卷积神经网络 各向异性 材料科学 光谱学 人工智能 癌症 计算机科学 核磁共振 模式识别(心理学) 生物系统 光学 生物 物理 遗传学 量子力学
作者
Linwei Shang,Jinlan Tang,Jinjin Wu,Hui Shang,Xing Huang,Yilin Bao,Zhibing Xu,Huijie Wang,Jianhua Yin
出处
期刊:Biosensors [MDPI AG]
卷期号:13 (1): 65-65 被引量:8
标识
DOI:10.3390/bios13010065
摘要

Raman spectroscopy has been efficiently used to recognize breast cancer tissue by detecting the characteristic changes in tissue composition in cancerization. In addition to chemical composition, the change in bio-structure may be easily obtained via polarized micro-Raman spectroscopy, aiding in identifying the cancerization process and diagnosis. In this study, a polarized Raman spectral technique is employed to obtain rich structural features and, combined with deep learning technology, to achieve discrimination of breast cancer tissue. The results reconfirm that the orientation of collagen fibers changes from parallel to vertical during breast cancerization, and there are significant structural differences between cancerous and normal tissues, which is consistent with previous reports. Optical anisotropy of collagen fibers weakens in cancer tissue, which is closely related with the tumor's progression. To distinguish breast cancer tissue, a discrimination model is established based on a two-dimensional convolutional neural network (2D-CNN), where the input is a matrix containing the Raman spectra acquired at a set of linear polarization angles varying from 0° to 360°. As a result, an average discrimination accuracy of 96.01% for test samples is achieved, better than that of the KNN classifier and 1D-CNN that are based on non-polarized Raman spectra. This study implies that polarized Raman spectroscopy combined with 2D-CNN can effectively detect changes in the structure and components of tissues, innovatively improving the identification and automatic diagnosis of breast cancer with label-free probing and analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七号楼少女完成签到,获得积分10
刚刚
默默完成签到,获得积分10
刚刚
1秒前
西门戆戆完成签到,获得积分10
3秒前
小石榴爸爸完成签到 ,获得积分10
3秒前
4秒前
葛力完成签到,获得积分10
4秒前
hsss应助科研通管家采纳,获得10
5秒前
pluto应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
BareBear应助科研通管家采纳,获得10
5秒前
子车茗应助科研通管家采纳,获得20
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
BareBear应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
子车茗应助科研通管家采纳,获得20
5秒前
丘比特应助科研通管家采纳,获得50
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得20
5秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
子车茗应助科研通管家采纳,获得20
6秒前
Owen应助科研通管家采纳,获得10
6秒前
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
6秒前
小满完成签到,获得积分10
7秒前
9秒前
娜行完成签到 ,获得积分10
9秒前
rainbowbaby完成签到 ,获得积分10
10秒前
心灵美砖头完成签到,获得积分10
10秒前
科研白菜白完成签到,获得积分10
10秒前
李树玉完成签到 ,获得积分10
11秒前
11秒前
到江南散步完成签到,获得积分10
12秒前
14秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378722
求助须知:如何正确求助?哪些是违规求助? 4503127
关于积分的说明 14015166
捐赠科研通 4411843
什么是DOI,文献DOI怎么找? 2423519
邀请新用户注册赠送积分活动 1416462
关于科研通互助平台的介绍 1393901