Polarized Micro-Raman Spectroscopy and 2D Convolutional Neural Network Applied to Structural Analysis and Discrimination of Breast Cancer

拉曼光谱 乳腺癌 卷积神经网络 各向异性 材料科学 光谱学 人工智能 癌症 计算机科学 核磁共振 模式识别(心理学) 生物系统 光学 生物 物理 遗传学 量子力学
作者
Linwei Shang,Jinlan Tang,Jinjin Wu,Hui Shang,Xing Huang,Yilin Bao,Zhibing Xu,Huijie Wang,Jianhua Yin
出处
期刊:Biosensors [MDPI AG]
卷期号:13 (1): 65-65 被引量:8
标识
DOI:10.3390/bios13010065
摘要

Raman spectroscopy has been efficiently used to recognize breast cancer tissue by detecting the characteristic changes in tissue composition in cancerization. In addition to chemical composition, the change in bio-structure may be easily obtained via polarized micro-Raman spectroscopy, aiding in identifying the cancerization process and diagnosis. In this study, a polarized Raman spectral technique is employed to obtain rich structural features and, combined with deep learning technology, to achieve discrimination of breast cancer tissue. The results reconfirm that the orientation of collagen fibers changes from parallel to vertical during breast cancerization, and there are significant structural differences between cancerous and normal tissues, which is consistent with previous reports. Optical anisotropy of collagen fibers weakens in cancer tissue, which is closely related with the tumor's progression. To distinguish breast cancer tissue, a discrimination model is established based on a two-dimensional convolutional neural network (2D-CNN), where the input is a matrix containing the Raman spectra acquired at a set of linear polarization angles varying from 0° to 360°. As a result, an average discrimination accuracy of 96.01% for test samples is achieved, better than that of the KNN classifier and 1D-CNN that are based on non-polarized Raman spectra. This study implies that polarized Raman spectroscopy combined with 2D-CNN can effectively detect changes in the structure and components of tissues, innovatively improving the identification and automatic diagnosis of breast cancer with label-free probing and analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
livian完成签到,获得积分10
刚刚
dm完成签到,获得积分10
1秒前
李爱国应助解语花采纳,获得10
1秒前
michael发布了新的文献求助10
3秒前
4秒前
4秒前
东方羽之佳完成签到,获得积分10
5秒前
qiao完成签到 ,获得积分10
7秒前
annie完成签到,获得积分10
7秒前
8秒前
YY发布了新的文献求助10
9秒前
hy完成签到 ,获得积分10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
10秒前
pluto应助科研通管家采纳,获得10
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
万能图书馆应助annie采纳,获得10
12秒前
今后应助lh961129采纳,获得10
12秒前
大个应助高贵熊猫采纳,获得10
16秒前
炫彩小陈完成签到 ,获得积分10
19秒前
希望天下0贩的0应助qiuling采纳,获得10
19秒前
26秒前
zero37完成签到,获得积分10
26秒前
jason发布了新的文献求助10
27秒前
byron完成签到 ,获得积分10
27秒前
longyuzhu完成签到,获得积分20
27秒前
山楂罐头冰冰凉完成签到 ,获得积分10
28秒前
内向蜡烛发布了新的文献求助10
30秒前
DrJiang完成签到,获得积分10
30秒前
31秒前
32秒前
ph完成签到,获得积分10
33秒前
hsn完成签到,获得积分10
34秒前
CodeCraft应助足球采纳,获得10
34秒前
辛勤的晓兰完成签到,获得积分10
35秒前
科研通AI6应助费费采纳,获得10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565531
求助须知:如何正确求助?哪些是违规求助? 4650613
关于积分的说明 14691991
捐赠科研通 4592552
什么是DOI,文献DOI怎么找? 2519689
邀请新用户注册赠送积分活动 1492065
关于科研通互助平台的介绍 1463281