Polarized Micro-Raman Spectroscopy and 2D Convolutional Neural Network Applied to Structural Analysis and Discrimination of Breast Cancer

拉曼光谱 乳腺癌 卷积神经网络 各向异性 材料科学 光谱学 人工智能 癌症 计算机科学 核磁共振 模式识别(心理学) 生物系统 光学 生物 物理 遗传学 量子力学
作者
Linwei Shang,Jinlan Tang,Jinjin Wu,Hui Shang,Xing Huang,Yilin Bao,Zhibing Xu,Huijie Wang,Jianhua Yin
出处
期刊:Biosensors [Multidisciplinary Digital Publishing Institute]
卷期号:13 (1): 65-65 被引量:8
标识
DOI:10.3390/bios13010065
摘要

Raman spectroscopy has been efficiently used to recognize breast cancer tissue by detecting the characteristic changes in tissue composition in cancerization. In addition to chemical composition, the change in bio-structure may be easily obtained via polarized micro-Raman spectroscopy, aiding in identifying the cancerization process and diagnosis. In this study, a polarized Raman spectral technique is employed to obtain rich structural features and, combined with deep learning technology, to achieve discrimination of breast cancer tissue. The results reconfirm that the orientation of collagen fibers changes from parallel to vertical during breast cancerization, and there are significant structural differences between cancerous and normal tissues, which is consistent with previous reports. Optical anisotropy of collagen fibers weakens in cancer tissue, which is closely related with the tumor's progression. To distinguish breast cancer tissue, a discrimination model is established based on a two-dimensional convolutional neural network (2D-CNN), where the input is a matrix containing the Raman spectra acquired at a set of linear polarization angles varying from 0° to 360°. As a result, an average discrimination accuracy of 96.01% for test samples is achieved, better than that of the KNN classifier and 1D-CNN that are based on non-polarized Raman spectra. This study implies that polarized Raman spectroscopy combined with 2D-CNN can effectively detect changes in the structure and components of tissues, innovatively improving the identification and automatic diagnosis of breast cancer with label-free probing and analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
aaaaa22222完成签到,获得积分10
1秒前
华仔应助XRWei采纳,获得10
1秒前
碧松桥发布了新的文献求助10
2秒前
2秒前
jiujiu发布了新的文献求助30
2秒前
2秒前
zzz发布了新的文献求助30
3秒前
3秒前
JamesPei应助徒弟的师傅采纳,获得10
5秒前
zsgot3发布了新的文献求助10
6秒前
科研通AI6应助展博采纳,获得10
6秒前
6秒前
共享精神应助工藤新一采纳,获得10
6秒前
xiaoxiao1992发布了新的文献求助10
6秒前
等等有力气完成签到,获得积分10
7秒前
7秒前
Orange应助蒋一采纳,获得10
8秒前
8秒前
8秒前
大方芾完成签到,获得积分10
9秒前
9秒前
科研通AI6应助Shahid采纳,获得10
9秒前
10秒前
11秒前
Gaberil发布了新的文献求助10
11秒前
11秒前
11秒前
阿晴完成签到,获得积分10
12秒前
ecrrry完成签到 ,获得积分10
12秒前
13秒前
美好幻灵发布了新的文献求助10
13秒前
13秒前
13秒前
碧松桥完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403