Polarized Micro-Raman Spectroscopy and 2D Convolutional Neural Network Applied to Structural Analysis and Discrimination of Breast Cancer

拉曼光谱 乳腺癌 卷积神经网络 各向异性 材料科学 光谱学 人工智能 癌症 计算机科学 核磁共振 模式识别(心理学) 生物系统 光学 生物 物理 遗传学 量子力学
作者
Linwei Shang,Jinlan Tang,Jinjin Wu,Hui Shang,Xing Huang,Yilin Bao,Zhibing Xu,Huijie Wang,Jianhua Yin
出处
期刊:Biosensors [Multidisciplinary Digital Publishing Institute]
卷期号:13 (1): 65-65 被引量:8
标识
DOI:10.3390/bios13010065
摘要

Raman spectroscopy has been efficiently used to recognize breast cancer tissue by detecting the characteristic changes in tissue composition in cancerization. In addition to chemical composition, the change in bio-structure may be easily obtained via polarized micro-Raman spectroscopy, aiding in identifying the cancerization process and diagnosis. In this study, a polarized Raman spectral technique is employed to obtain rich structural features and, combined with deep learning technology, to achieve discrimination of breast cancer tissue. The results reconfirm that the orientation of collagen fibers changes from parallel to vertical during breast cancerization, and there are significant structural differences between cancerous and normal tissues, which is consistent with previous reports. Optical anisotropy of collagen fibers weakens in cancer tissue, which is closely related with the tumor's progression. To distinguish breast cancer tissue, a discrimination model is established based on a two-dimensional convolutional neural network (2D-CNN), where the input is a matrix containing the Raman spectra acquired at a set of linear polarization angles varying from 0° to 360°. As a result, an average discrimination accuracy of 96.01% for test samples is achieved, better than that of the KNN classifier and 1D-CNN that are based on non-polarized Raman spectra. This study implies that polarized Raman spectroscopy combined with 2D-CNN can effectively detect changes in the structure and components of tissues, innovatively improving the identification and automatic diagnosis of breast cancer with label-free probing and analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助心杨采纳,获得10
刚刚
老年陈皮发布了新的文献求助20
1秒前
顾矜应助Nature_Science采纳,获得10
2秒前
666关注了科研通微信公众号
3秒前
4秒前
王若琪发布了新的文献求助10
5秒前
虎头怪发布了新的文献求助30
7秒前
9秒前
10秒前
11秒前
13秒前
111发布了新的文献求助10
14秒前
Fjun完成签到,获得积分10
15秒前
马林发布了新的文献求助10
15秒前
16秒前
guochang发布了新的文献求助10
16秒前
阿米不吃菠菜完成签到 ,获得积分10
16秒前
18秒前
彭于晏应助爱笑的冷风采纳,获得10
19秒前
Qwe发布了新的文献求助10
19秒前
科目三应助leslieo3o采纳,获得10
19秒前
22秒前
大个应助从容山兰采纳,获得30
23秒前
无花果应助乐乐采纳,获得10
23秒前
24秒前
24秒前
臻灏发布了新的文献求助10
24秒前
26秒前
666发布了新的文献求助10
26秒前
852应助Lily采纳,获得10
28秒前
悦耳荟完成签到,获得积分20
28秒前
30秒前
虎头怪发布了新的文献求助30
32秒前
MORNING发布了新的文献求助10
32秒前
Lh6610完成签到,获得积分0
32秒前
慧灰huihui发布了新的文献求助10
32秒前
33秒前
JamesPei应助笑点低的丹烟采纳,获得10
33秒前
权志龙完成签到,获得积分10
33秒前
赘婿应助臻灏采纳,获得10
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952404
求助须知:如何正确求助?哪些是违规求助? 3497780
关于积分的说明 11088843
捐赠科研通 3228383
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303