清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Polarized Micro-Raman Spectroscopy and 2D Convolutional Neural Network Applied to Structural Analysis and Discrimination of Breast Cancer

拉曼光谱 乳腺癌 卷积神经网络 各向异性 材料科学 光谱学 人工智能 癌症 计算机科学 核磁共振 模式识别(心理学) 生物系统 光学 生物 物理 遗传学 量子力学
作者
Linwei Shang,Jinlan Tang,Jinjin Wu,Hui Shang,Xing Huang,Yilin Bao,Zhibing Xu,Huijie Wang,Jianhua Yin
出处
期刊:Biosensors [MDPI AG]
卷期号:13 (1): 65-65 被引量:8
标识
DOI:10.3390/bios13010065
摘要

Raman spectroscopy has been efficiently used to recognize breast cancer tissue by detecting the characteristic changes in tissue composition in cancerization. In addition to chemical composition, the change in bio-structure may be easily obtained via polarized micro-Raman spectroscopy, aiding in identifying the cancerization process and diagnosis. In this study, a polarized Raman spectral technique is employed to obtain rich structural features and, combined with deep learning technology, to achieve discrimination of breast cancer tissue. The results reconfirm that the orientation of collagen fibers changes from parallel to vertical during breast cancerization, and there are significant structural differences between cancerous and normal tissues, which is consistent with previous reports. Optical anisotropy of collagen fibers weakens in cancer tissue, which is closely related with the tumor's progression. To distinguish breast cancer tissue, a discrimination model is established based on a two-dimensional convolutional neural network (2D-CNN), where the input is a matrix containing the Raman spectra acquired at a set of linear polarization angles varying from 0° to 360°. As a result, an average discrimination accuracy of 96.01% for test samples is achieved, better than that of the KNN classifier and 1D-CNN that are based on non-polarized Raman spectra. This study implies that polarized Raman spectroscopy combined with 2D-CNN can effectively detect changes in the structure and components of tissues, innovatively improving the identification and automatic diagnosis of breast cancer with label-free probing and analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RC发布了新的文献求助10
3秒前
沉沉完成签到 ,获得积分0
40秒前
58秒前
BowieHuang应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
zzzy完成签到 ,获得积分10
2分钟前
紫焰完成签到 ,获得积分10
2分钟前
濮阳灵竹完成签到,获得积分10
3分钟前
BowieHuang应助Yvonne采纳,获得10
3分钟前
3分钟前
3分钟前
自律发布了新的文献求助10
3分钟前
RC关闭了RC文献求助
3分钟前
3分钟前
3分钟前
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
脑洞疼应助科研通管家采纳,获得10
3分钟前
3分钟前
RC发布了新的文献求助10
4分钟前
laohei94_6完成签到 ,获得积分10
4分钟前
科研通AI6应助RC采纳,获得10
4分钟前
烂漫念文发布了新的文献求助30
4分钟前
4分钟前
毛毛完成签到,获得积分10
4分钟前
大医仁心完成签到 ,获得积分10
4分钟前
两个榴莲完成签到,获得积分0
4分钟前
呆呆的猕猴桃完成签到 ,获得积分10
4分钟前
4分钟前
尤里有气发布了新的文献求助10
4分钟前
Yvonne发布了新的文献求助10
5分钟前
传奇3应助Yvonne采纳,获得10
5分钟前
Yvonne完成签到,获得积分10
5分钟前
宁羽发布了新的文献求助10
5分钟前
zct完成签到,获得积分10
5分钟前
zh完成签到,获得积分10
5分钟前
852应助科研通管家采纳,获得10
5分钟前
6分钟前
尤里有气发布了新的文献求助10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590577
求助须知:如何正确求助?哪些是违规求助? 4674818
关于积分的说明 14795392
捐赠科研通 4633541
什么是DOI,文献DOI怎么找? 2532825
邀请新用户注册赠送积分活动 1501328
关于科研通互助平台的介绍 1468733