亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Assessment of performance of the machine learning-based breast cancer risk prediction models: a systematic review.

机器学习 乳腺癌 人工智能 预测建模 医学 人工神经网络 风险评估 癌症 计算机科学 内科学 计算机安全
作者
Ying Gao,Shu Li,Yujing Jin,Lengxiao Zhou,Shaomei Sun,Xiaoqian Xu,Shuqian Li,Hongxi Yang,Qing Zhang,Yaogang Wang
出处
期刊:JMIR public health and surveillance [JMIR Publications Inc.]
标识
DOI:10.2196/35750
摘要

Background: Several studies have explored the predictive performance of machine learning-based breast cancer risk prediction models and the results arrived at controversial conclusions, which prompts us to review the performance and weaknesses of machine learning-based breast cancer risk prediction models.Objectives: To assess the performance and clinical feasibility of available machine learning-based breast cancer risk prediction model.Methods: As of June 9, 2021, articles on breast cancer risk prediction models by machine learning were searched in PubMed, Embase, and Web of Science. Studies describing the development or validation models for predicting future breast cancer risk were included. Prediction Model Risk of Bias Assessment Tool (PROBAST) was used to assess the risk of bias (ROB) and clinical applicability of included studies. Pooled area under the curve (AUC) were calculated using the DerSimonian and Laird random-effects model.Results: A total of 8 studies with 10 datasets were included. Neural network was the most common machine learning method for the development of breast cancer risk prediction models. The pooled AUC of machine learning-based optimal risk prediction model reported in each study was 0.73 (95%CI: 0.66-0.80; approximate 95%PI: 0.56-0.96), with a high level of heterogeneity between studies (Q value=576.07, I2=98.44%, P < .001). The results of head-to-head comparison the performance difference in two type models trained by same dataset showed that machine learning models had a slight advantage in predicting future breast cancer risk than traditional risk factor-based models. The pooled AUC of neural network-based risk prediction model was higher than that of non-neural network-based optimal risk prediction model (0.71 vs. 0.68). Subgroup analysis showed that incorporation of imaging features risk models had a higher pooled AUC than model of non-incorporation of imaging features (0.73 vs. 0.61; Pheterogeneity = .001). The PROBAST analysis indicated that many machine learning models had high ROB, and poorly reported calibration analysis.Conclusions: Machine learning-based breast cancer risk prediction models had some technical pitfalls, and their clinical feasibility and reliability were unsatisfactory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
18秒前
19秒前
20秒前
tracy发布了新的文献求助10
24秒前
zxx0126完成签到,获得积分10
24秒前
波西米亚完成签到,获得积分10
29秒前
31秒前
我是老大应助科研通管家采纳,获得10
31秒前
赘婿应助科研通管家采纳,获得10
31秒前
35秒前
37秒前
tracy完成签到,获得积分10
39秒前
fareless完成签到 ,获得积分10
40秒前
tufei发布了新的文献求助10
40秒前
42秒前
feiying发布了新的文献求助10
43秒前
zoey完成签到,获得积分10
46秒前
蓝天海完成签到,获得积分0
46秒前
zxx0126发布了新的文献求助10
48秒前
顾矜应助tracy采纳,获得10
1分钟前
大个应助icedreamer111采纳,获得10
1分钟前
1分钟前
1分钟前
SciGPT应助景胜杰采纳,获得30
1分钟前
Mm发布了新的文献求助10
1分钟前
1分钟前
小龙女发布了新的文献求助10
1分钟前
Ava应助zhang_23采纳,获得10
1分钟前
李健应助tufei采纳,获得10
1分钟前
Lorain完成签到,获得积分10
1分钟前
希望天下0贩的0应助realzuli采纳,获得10
1分钟前
烟花应助小龙女采纳,获得10
1分钟前
1分钟前
华仔应助hio采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
景胜杰发布了新的文献求助30
2分钟前
寻道图强应助科研通管家采纳,获得30
2分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244671
求助须知:如何正确求助?哪些是违规求助? 2888383
关于积分的说明 8252725
捐赠科研通 2556854
什么是DOI,文献DOI怎么找? 1385369
科研通“疑难数据库(出版商)”最低求助积分说明 650157
邀请新用户注册赠送积分活动 626247