GraphLncLoc: long non-coding RNA subcellular localization prediction using graph convolutional networks based on sequence to graph transformation

德布鲁因图 计算机科学 编码 德布鲁恩序列 图形 卷积神经网络 深度学习 人工智能 模式识别(心理学) 理论计算机科学 生物 数学 遗传学 基因 组合数学
作者
Min Li,Baoying Zhao,Rui Yin,Chengqian Lu,Fei Guo,Min Zeng
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (1) 被引量:5
标识
DOI:10.1093/bib/bbac565
摘要

The subcellular localization of long non-coding RNAs (lncRNAs) is crucial for understanding lncRNA functions. Most of existing lncRNA subcellular localization prediction methods use k-mer frequency features to encode lncRNA sequences. However, k-mer frequency features lose sequence order information and fail to capture sequence patterns and motifs of different lengths. In this paper, we proposed GraphLncLoc, a graph convolutional network-based deep learning model, for predicting lncRNA subcellular localization. Unlike previous studies encoding lncRNA sequences by using k-mer frequency features, GraphLncLoc transforms lncRNA sequences into de Bruijn graphs, which transforms the sequence classification problem into a graph classification problem. To extract the high-level features from the de Bruijn graph, GraphLncLoc employs graph convolutional networks to learn latent representations. Then, the high-level feature vectors derived from de Bruijn graph are fed into a fully connected layer to perform the prediction task. Extensive experiments show that GraphLncLoc achieves better performance than traditional machine learning models and existing predictors. In addition, our analyses show that transforming sequences into graphs has more distinguishable features and is more robust than k-mer frequency features. The case study shows that GraphLncLoc can uncover important motifs for nucleus subcellular localization. GraphLncLoc web server is available at http://csuligroup.com:8000/GraphLncLoc/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助李婉辰采纳,获得10
2秒前
无花果应助西瓜采纳,获得10
2秒前
Xie应助一直小虾米采纳,获得10
3秒前
ZZ完成签到,获得积分10
4秒前
6秒前
8秒前
爵士黄瓜发布了新的文献求助10
10秒前
优美的风完成签到,获得积分10
11秒前
丘比特应助1234采纳,获得10
11秒前
aldehyde应助盒子采纳,获得10
12秒前
sunlihao发布了新的文献求助10
13秒前
FAYE完成签到,获得积分20
13秒前
15秒前
思源应助柔弱的千秋采纳,获得10
15秒前
迷路秋荷完成签到 ,获得积分10
16秒前
srq发布了新的文献求助10
17秒前
火的信仰完成签到 ,获得积分10
19秒前
西瓜发布了新的文献求助10
20秒前
wang完成签到,获得积分20
20秒前
SC234完成签到 ,获得积分10
23秒前
24秒前
25秒前
25秒前
猪猪hero应助srq采纳,获得10
25秒前
Jasper应助西瓜采纳,获得10
26秒前
26秒前
sunlihao完成签到,获得积分10
29秒前
看不了一点文献应助ZZZ采纳,获得20
29秒前
1234发布了新的文献求助10
30秒前
斯文败类应助ztq417采纳,获得10
31秒前
32秒前
科研通AI5应助胡八一采纳,获得10
32秒前
ddd发布了新的文献求助10
32秒前
今后应助喻踏歌采纳,获得10
34秒前
37秒前
wxy完成签到,获得积分10
37秒前
可耐的海莲完成签到,获得积分20
37秒前
科研同完成签到 ,获得积分10
39秒前
西瓜发布了新的文献求助10
42秒前
42秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
Local and systemic effects of topical betulinic acid in a psoriasis-like inflammation model in mice 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980408
求助须知:如何正确求助?哪些是违规求助? 3524319
关于积分的说明 11220990
捐赠科研通 3261764
什么是DOI,文献DOI怎么找? 1800909
邀请新用户注册赠送积分活动 879424
科研通“疑难数据库(出版商)”最低求助积分说明 807261