All‐copper Flow Batteries

微型多孔材料 电解质 电池(电) 电化学 流动电池 材料科学 堆栈(抽象数据类型) 氧化还原 化学工程 电极 化学 计算机科学 冶金 复合材料 热力学 工程类 功率(物理) 物理 物理化学 程序设计语言
作者
Laura Sanz,Wouter Dirk Badenhorst,Giampaolo Lacarbonara,Luigi Faggiano,David Lloyd,Pertti Kauranen,Catia Arbizzani,Lasse Murtomäki
标识
DOI:10.1002/9783527832767.ch38
摘要

In this chapter, an overview of current insights of the all-copper Flow Battery (CuFB) is presented and discussed. Although early investigations in all-copper battery systems were already addressed in the mid-1970s, the first practical approach of CuFBs appeared in 2014. The system consists of a hybrid FB based on chloride-rich aqueous electrolytes, where Cu(I)/Cu(II) and Cu 0 /Cu(I) are the redox couples involved in the reactions at the positive and negative half-cells respectively, providing an open circuit voltage of 0.65 V. The composition of the supporting electrolyte strongly affects the electrochemical and physical properties of the copper species, which needs to be carefully selected to ensure the stability of cuprous species, high conductivity and low density and viscosity, enhancing reversibility, kinetics, and stability in solution. HCl and CaCl 2 , as well as mixtures thereof, have been widely investigated as supporting electrolytes providing excellent results. Also, the use of a variety of electrode materials has been proposed, attending to performance and cost criteria. Finally, low-cost polymeric separators and microporous membranes have shown great potential for their application in CuFBs. The use of non-expensive materials coupled with the excellent electrochemical performance and the high availability and recyclability of copper, place this technology well ahead in terms of cost-effectiveness and sustainability compared to other FBs. Different prototypes of the CuFB at laboratory scale have been developed so far, showing promising results. Ongoing research is focused on the optimization of the stack design and in the scale-up of these prototypes up to kW level.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
揽月发布了新的文献求助10
刚刚
1秒前
SilongZhao发布了新的文献求助10
1秒前
wanci应助正直的以寒采纳,获得10
2秒前
小二郎应助yiyi采纳,获得10
2秒前
杨纨成完成签到 ,获得积分10
2秒前
2秒前
ljj发布了新的文献求助10
2秒前
科研通AI5应助yy羊采纳,获得10
3秒前
碧蓝世立完成签到,获得积分10
3秒前
Light完成签到,获得积分10
3秒前
六角完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
清脆的如凡完成签到 ,获得积分10
6秒前
孤独靖柏发布了新的文献求助10
6秒前
李健应助晚归的游子采纳,获得10
7秒前
orixero应助薄志远采纳,获得10
7秒前
guozeyi发布了新的文献求助10
8秒前
APRIL_SKY完成签到,获得积分10
8秒前
rigou667完成签到,获得积分10
8秒前
林小格完成签到,获得积分10
8秒前
xxx发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
揽月完成签到,获得积分10
10秒前
chenxy发布了新的文献求助10
11秒前
小蘑菇应助SilongZhao采纳,获得10
11秒前
三色完成签到,获得积分10
11秒前
11秒前
12秒前
彭于晏应助许可可仔儿采纳,获得10
12秒前
13秒前
freedom完成签到,获得积分10
13秒前
13秒前
壮观复天发布了新的文献求助10
14秒前
ZZY完成签到,获得积分10
15秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3480218
求助须知:如何正确求助?哪些是违规求助? 3070720
关于积分的说明 9118619
捐赠科研通 2762343
什么是DOI,文献DOI怎么找? 1515807
邀请新用户注册赠送积分活动 701185
科研通“疑难数据库(出版商)”最低求助积分说明 700169