拓扑(电路)
磁场
电流(流体)
分子
矢量场
电流密度
甲烷
密度泛函理论
领域(数学)
物理
凝聚态物理
材料科学
化学
数学
量子力学
热力学
机械
纯数学
组合数学
有机化学
作者
Francesco F. Summa,Guglielmo Monaco,Riccardo Zanasi,Stefano Pelloni,Paolo Lazzeretti
出处
期刊:Elsevier eBooks
[Elsevier]
日期:2024-01-01
卷期号:: 175-188
被引量:1
标识
DOI:10.1016/b978-0-12-821978-2.00045-3
摘要
The current density JB, induced by a time-independent, spatially uniform magnetic field B in the electron cloud of a molecule, is characterized by peculiar topological features. The fundamental elements for the topological analysis of the JB(r) vector field are the stagnation points (SP) at which it vanishes. One-dimensional manifolds of stagnation points are named stagnation lines (SL). The set of all SPs and SLs constitute the stagnation graph (SG) of the current density vector field. An SG yields exhaustive information on JB(r) in compact form, as exemplified by accurate calculations on a few small molecules at DFT level of approximation.
科研通智能强力驱动
Strongly Powered by AbleSci AI