Deep learning based on preoperative magnetic resonance (MR) images improves the predictive power of survival models in primary spinal cord astrocytomas

医学 磁共振成像 分割 星形细胞瘤 管道(软件) 深度学习 人工智能 放射科 胶质瘤 计算机科学 程序设计语言 癌症研究
作者
Ting Sun,Yongzhi Wang,Xing Liu,Zhaohui Li,Jie Zhang,Jing Lü,Liying Qu,Sven Haller,Yunyun Duan,Zhizheng Zhuo,Dan Cheng,Xiaolu Xu,Wenqing Jia,Yaou Liu
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:25 (6): 1157-1165 被引量:5
标识
DOI:10.1093/neuonc/noac280
摘要

Prognostic models for spinal cord astrocytoma patients are lacking due to the low incidence of the disease. Here, we aim to develop a fully automated deep learning (DL) pipeline for stratified overall survival (OS) prediction based on preoperative MR images.A total of 587 patients diagnosed with intramedullary tumors were retrospectively enrolled in our hospital to develop an automated pipeline for tumor segmentation and OS prediction. The automated pipeline included a T2WI-based tumor segmentation model and 3 cascaded binary OS prediction models (1-year, 3-year, and 5-year models). For the tumor segmentation model, 439 cases of intramedullary tumors were used to model training and testing using a transfer learning strategy. A total of 138 patients diagnosed with astrocytomas were included to train and test the OS prediction models via 10 × 10-fold cross-validation using CNNs.The dice of the tumor segmentation model with the test set was 0.852. The results indicated that the best input of OS prediction models was a combination of T2W and T1C images and the tumor mask. The 1-year, 3-year, and 5-year automated OS prediction models achieved accuracies of 86.0%, 84.0%, and 88.0% and AUCs of 0.881 (95% CI 0.839-0.918), 0.862 (95% CI 0.827-0.901), and 0.905 (95% CI 0.867-0.942), respectively. The automated DL pipeline achieved 4-class OS prediction (<1 year, 1-3 years, 3-5 years, and >5 years) with 75.3% accuracy.We proposed an automated DL pipeline for segmenting spinal cord astrocytomas and stratifying OS based on preoperative MR images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
锌迹发布了新的文献求助10
刚刚
深情安青应助韧战采纳,获得10
刚刚
刚刚
爆米花应助噜噜晓采纳,获得10
1秒前
许子健发布了新的文献求助10
1秒前
风中的曼彤关注了科研通微信公众号
1秒前
尊敬吐司发布了新的文献求助10
1秒前
1秒前
张阿童木完成签到,获得积分20
1秒前
付大威关注了科研通微信公众号
2秒前
彭于晏应助wxy采纳,获得10
3秒前
gwh发布了新的文献求助10
4秒前
4秒前
雾昂发布了新的文献求助10
5秒前
顾矜应助yck1027采纳,获得10
5秒前
5秒前
5秒前
zyq完成签到,获得积分20
6秒前
兜兜完成签到,获得积分10
7秒前
7秒前
无花果应助fanpengzhen采纳,获得10
7秒前
我迷了鹿发布了新的文献求助10
7秒前
明天过后发布了新的文献求助10
8秒前
小白发布了新的文献求助10
8秒前
8秒前
浪而而发布了新的文献求助10
9秒前
9秒前
gwh完成签到,获得积分10
9秒前
ninwa20完成签到,获得积分10
10秒前
锌迹完成签到,获得积分10
10秒前
sheep2fly完成签到,获得积分10
10秒前
Han发布了新的文献求助10
10秒前
Gotyababy发布了新的文献求助10
10秒前
科研通AI6应助shuangcheng采纳,获得10
11秒前
11秒前
李牧发布了新的文献求助10
11秒前
11秒前
量子星尘发布了新的文献求助50
12秒前
噜噜晓发布了新的文献求助10
12秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646