医学
磁共振成像
分割
星形细胞瘤
管道(软件)
深度学习
人工智能
放射科
胶质瘤
计算机科学
癌症研究
程序设计语言
作者
Ting Sun,Yongzhi Wang,Xing Liu,Zhaohui Li,Jie Zhang,Jing Lü,Liying Qu,Sven Haller,Yunyun Duan,Zhizheng Zhuo,Dan Cheng,Xiaolu Xu,Wenqing Jia,Yaou Liu
出处
期刊:Neuro-oncology
[Oxford University Press]
日期:2022-12-21
卷期号:25 (6): 1157-1165
被引量:5
标识
DOI:10.1093/neuonc/noac280
摘要
Prognostic models for spinal cord astrocytoma patients are lacking due to the low incidence of the disease. Here, we aim to develop a fully automated deep learning (DL) pipeline for stratified overall survival (OS) prediction based on preoperative MR images.A total of 587 patients diagnosed with intramedullary tumors were retrospectively enrolled in our hospital to develop an automated pipeline for tumor segmentation and OS prediction. The automated pipeline included a T2WI-based tumor segmentation model and 3 cascaded binary OS prediction models (1-year, 3-year, and 5-year models). For the tumor segmentation model, 439 cases of intramedullary tumors were used to model training and testing using a transfer learning strategy. A total of 138 patients diagnosed with astrocytomas were included to train and test the OS prediction models via 10 × 10-fold cross-validation using CNNs.The dice of the tumor segmentation model with the test set was 0.852. The results indicated that the best input of OS prediction models was a combination of T2W and T1C images and the tumor mask. The 1-year, 3-year, and 5-year automated OS prediction models achieved accuracies of 86.0%, 84.0%, and 88.0% and AUCs of 0.881 (95% CI 0.839-0.918), 0.862 (95% CI 0.827-0.901), and 0.905 (95% CI 0.867-0.942), respectively. The automated DL pipeline achieved 4-class OS prediction (<1 year, 1-3 years, 3-5 years, and >5 years) with 75.3% accuracy.We proposed an automated DL pipeline for segmenting spinal cord astrocytomas and stratifying OS based on preoperative MR images.
科研通智能强力驱动
Strongly Powered by AbleSci AI