色氨酸
犬尿氨酸途径
安普克
促炎细胞因子
炎症
自噬
脂多糖
犬尿氨酸
化学
代谢途径
生物化学
生物
细胞生物学
蛋白激酶A
免疫学
新陈代谢
激酶
氨基酸
细胞凋亡
作者
Nan Gao,Yang Yang,Siqi Liu,Chunyang Fang,Xiujing Dou,Licong Zhang,Anshan Shan
标识
DOI:10.1021/acs.jafc.2c05381
摘要
Tryptophan has drawn wide attention due to its involvement in improving intestinal immune defense directly and indirectly by regulating metabolic pathways. The study aims to elucidate the potential modulating roles of tryptophan to protect against intestinal inflammation and elucidate the underlying molecular mechanisms. The protective effects of tryptophan against intestinal inflammation are examined in the lipopolysaccharide (LPS)-induced inflammatory model. We first found that tryptophan markedly (p < 0.01) inhibited proinflammatory cytokines production and nuclear factor κB (NF-κB) pathway activation upon LPS challenge. Next, we demonstrated that tryptophan (p < 0.05) attenuated LPS-caused intestinal mucosal barrier damage by increasing the number of goblet cells, mucins, and antimicrobial peptides (AMPs) in the ileum of mice. In addition, tryptophan (p < 0.05) inhibited LPS-induced autophagic flux through the AMP-activated protein kinase (AMPK)-sirtuin 1 (SIRT1) pathway in the intestinal systems to maintain autophagy homeostasis. Meanwhile, tryptophan also reshaped the gut microbiota composition in LPS-challenge mice by increasing the abundance of short-chain fatty acid (SCFA)-producing bacteria such as Acetivibrio (0.053 ± 0.017 to 0.21 ± 0.0041%). Notably, dietary tryptophan resulted in the activation of metabolic pathways during the inflammatory response. Furthermore, exogenous treatment of tryptophan metabolites kynurenine (Kyn) and 5-HT in porcine intestinal epithelial cells (IPEC-J2 cells) reproduced similar protective effects as tryptophan to attenuate LPS-induced intestinal inflammation through regulating the AMPK-SIRT1-autophagy. Taken together, the present study indicates that tryptophan exhibits intestinal protective and immunoregulatory effects resulting from the activation of metabolic pathways, maintenance of gut mucosal barrier integrity, microbiota composition, and AMPK-SIRT1-autophagy level.
科研通智能强力驱动
Strongly Powered by AbleSci AI