生物
基因组
康蒂格
草莓
遗传学
单倍型
顺序装配
参考基因组
基因家族
基因
等位基因
转录组
基因表达
作者
Jianxin Mao,Yan Wang,Bao‐Tian Wang,Jiqi Li,Chao Zhang,Wenshuo Zhang,Xue Li,Jie Li,Junxiang Zhang,He Li,Zhihong Zhang
摘要
Abstract Cultivated strawberry (Fragaria × ananassa), a perennial herb belonging to the family Rosaceae, is a complex octoploid with high heterozygosity at most loci. However, there is no research on the haplotype of the octoploid strawberry genome. Here we aimed to obtain a high-quality genome of the cultivated strawberry cultivar, “Yanli”, using single molecule real-time sequencing and high-throughput chromosome conformation capture technology. The “Yanli” genome was 823 Mb in size, with a long terminal repeat assembly index of 14.99. The genome was phased into two haplotypes, Hap1 (825 Mb with contig N50 of 26.70 Mb) and Hap2 (808 Mb with contig N50 of 27.51 Mb). Using the combination of Hap1 and Hap2, we obtained for the first time a haplotype-resolved genome with 56 chromosomes for the cultivated octoploid strawberry. We identified a ~ 10 Mb inversion and translocation on chromosome 2-1. 104 957 and 102 356 protein-coding genes were annotated in Hap1 and Hap2, respectively. Analysis of the genes related to the anthocyanin biosynthesis pathway revealed the structural diversity and complexity in the expression of the alleles in the octoploid F. × ananassa genome. In summary, we obtained a high-quality haplotype-resolved genome assembly of F. × ananassa, which will provide the foundation for investigating gene function and evolution of the genome of cultivated octoploid strawberry.
科研通智能强力驱动
Strongly Powered by AbleSci AI