Coupled adversarial learning for fusion classification of hyperspectral and LiDAR data

高光谱成像 激光雷达 计算机科学 判别式 特征(语言学) 人工智能 串联(数学) 模式识别(心理学) 遥感 地质学 数学 语言学 哲学 组合数学
作者
Ting Lu,Kexin Ding,Wei Fu,Shutao Li,Anjing Guo
出处
期刊:Information Fusion [Elsevier]
卷期号:93: 118-131 被引量:39
标识
DOI:10.1016/j.inffus.2022.12.020
摘要

Hyperspectral image (HSI) provides rich spectral–spatial information and the light detection and ranging (LiDAR) data reflect the elevation information, which can be jointly exploited for better land-cover classification. However, due to different imaging mechanisms, HSI and LiDAR data always present significant image difference, current pixel-wise feature fusion classification methods relying on concatenation or weighted fusion are not effective. To achieve accurate classification result, it is important to extract and fuse similar high-order semantic information and complementary discriminative information contained in multimodal data. In this paper, we propose a novel coupled adversarial learning based classification (CALC) method for fusion classification of HSI and LiDAR data. In specific, a coupled adversarial feature learning (CAFL) sub-network is first trained, to effectively learn the high-order semantic features from HSI and LiDAR data in an unsupervised manner. On one hand, the proposed CAFL sub-network establishes an adversarial game between dual generators and discriminators, so that the learnt features can preserve detail information in HSI and LiDAR data, respectively. On the other hand, by designing weight-sharing and linear fusion structure in the dual generators, we can simultaneously extract similar high-order semantic information and modal-specific complementary information. Meanwhile, a supervised multi-level feature fusion classification (MFFC) sub-network is trained, to further improve the classification performance via adaptive probability fusion strategy. In brief, the low-level, mid-level and high-level features learnt by the CAFL sub-network lead to multiple class estimation probabilities, which are then adaptively combined to generate a final accurate classification result. Both the CAFL and MFFC sub-networks are collaboratively trained by optimizing a designed joint loss function, which consists of unsupervised adversarial loss and supervised classification loss. Overall, by optimizing the joint loss function, the proposed CALC network is pushed to learn highly discriminative fusion features from multimodal data, leading to higher classification accuracies. Extensive experiments on three well-known HSI and LiDAR data sets demonstrate the superior classification performance by the proposed CALC method than several state-of-the-art methods. The source code of the proposed method will be made publicly available at https://github.com/Ding-Kexin/CALC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
toxin发布了新的文献求助10
1秒前
1秒前
彭于晏应助调皮寒凝采纳,获得10
2秒前
丘比特应助wbbb采纳,获得10
2秒前
starofjlu应助zzzwwwkkk采纳,获得10
2秒前
leila完成签到,获得积分10
2秒前
沉香续断完成签到,获得积分10
2秒前
完美世界应助范范111采纳,获得10
3秒前
Chen发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
Akim应助mimi采纳,获得10
4秒前
6秒前
leila发布了新的文献求助10
7秒前
hxksxc发布了新的文献求助30
7秒前
害羞的墨镜完成签到,获得积分10
7秒前
小灰灰完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
小二郎应助陌君子筱采纳,获得10
8秒前
ZZZ发布了新的文献求助10
9秒前
wangxu完成签到,获得积分20
9秒前
Jasper应助fiee采纳,获得10
10秒前
闲云野鹤完成签到,获得积分10
10秒前
程未央_12完成签到,获得积分10
10秒前
熊熊完成签到 ,获得积分10
10秒前
Chen完成签到,获得积分10
10秒前
松柏发布了新的文献求助150
11秒前
韦雪莲发布了新的文献求助10
11秒前
芹菜煎蛋完成签到,获得积分10
12秒前
王某完成签到,获得积分10
12秒前
丘比特应助愤怒也呵呵采纳,获得10
12秒前
13秒前
所所应助Tony12采纳,获得10
13秒前
wbbb发布了新的文献求助10
13秒前
13秒前
Hu发布了新的文献求助10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152625
求助须知:如何正确求助?哪些是违规求助? 2803842
关于积分的说明 7855937
捐赠科研通 2461519
什么是DOI,文献DOI怎么找? 1310346
科研通“疑难数据库(出版商)”最低求助积分说明 629199
版权声明 601782