Coupled adversarial learning for fusion classification of hyperspectral and LiDAR data

高光谱成像 激光雷达 计算机科学 判别式 特征(语言学) 人工智能 串联(数学) 模式识别(心理学) 遥感 地质学 数学 语言学 组合数学 哲学
作者
Ting Lu,Kexin Ding,Wei Fu,Shutao Li,Anjing Guo
出处
期刊:Information Fusion [Elsevier]
卷期号:93: 118-131 被引量:109
标识
DOI:10.1016/j.inffus.2022.12.020
摘要

Hyperspectral image (HSI) provides rich spectral–spatial information and the light detection and ranging (LiDAR) data reflect the elevation information, which can be jointly exploited for better land-cover classification. However, due to different imaging mechanisms, HSI and LiDAR data always present significant image difference, current pixel-wise feature fusion classification methods relying on concatenation or weighted fusion are not effective. To achieve accurate classification result, it is important to extract and fuse similar high-order semantic information and complementary discriminative information contained in multimodal data. In this paper, we propose a novel coupled adversarial learning based classification (CALC) method for fusion classification of HSI and LiDAR data. In specific, a coupled adversarial feature learning (CAFL) sub-network is first trained, to effectively learn the high-order semantic features from HSI and LiDAR data in an unsupervised manner. On one hand, the proposed CAFL sub-network establishes an adversarial game between dual generators and discriminators, so that the learnt features can preserve detail information in HSI and LiDAR data, respectively. On the other hand, by designing weight-sharing and linear fusion structure in the dual generators, we can simultaneously extract similar high-order semantic information and modal-specific complementary information. Meanwhile, a supervised multi-level feature fusion classification (MFFC) sub-network is trained, to further improve the classification performance via adaptive probability fusion strategy. In brief, the low-level, mid-level and high-level features learnt by the CAFL sub-network lead to multiple class estimation probabilities, which are then adaptively combined to generate a final accurate classification result. Both the CAFL and MFFC sub-networks are collaboratively trained by optimizing a designed joint loss function, which consists of unsupervised adversarial loss and supervised classification loss. Overall, by optimizing the joint loss function, the proposed CALC network is pushed to learn highly discriminative fusion features from multimodal data, leading to higher classification accuracies. Extensive experiments on three well-known HSI and LiDAR data sets demonstrate the superior classification performance by the proposed CALC method than several state-of-the-art methods. The source code of the proposed method will be made publicly available at https://github.com/Ding-Kexin/CALC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形傲霜完成签到 ,获得积分10
6秒前
ncwgx完成签到,获得积分10
8秒前
YuanLeiZhang完成签到,获得积分10
9秒前
科研通AI6应助Barry采纳,获得30
10秒前
11秒前
LY发布了新的文献求助10
11秒前
学术地雷发布了新的文献求助30
12秒前
香蕉觅云应助侯_采纳,获得10
12秒前
无极微光应助illuminate采纳,获得20
15秒前
16秒前
科研通AI6应助安静真采纳,获得10
16秒前
立冬发布了新的文献求助10
17秒前
或无情完成签到 ,获得积分10
20秒前
21秒前
zjq4302完成签到,获得积分10
22秒前
23秒前
随性发布了新的文献求助10
27秒前
zongzi12138完成签到,获得积分0
29秒前
kyle完成签到,获得积分10
30秒前
33秒前
ayayaya完成签到 ,获得积分10
35秒前
小蘑菇应助Jodie采纳,获得10
36秒前
wanci应助搞怪的鱼采纳,获得10
37秒前
鲤鱼依白完成签到 ,获得积分10
39秒前
标致夏真发布了新的文献求助30
40秒前
40秒前
彪壮的机器猫完成签到 ,获得积分10
41秒前
田様应助糟糕的铁锤采纳,获得10
41秒前
所所应助大气的懒羊羊采纳,获得10
44秒前
45秒前
标致夏真完成签到,获得积分10
50秒前
听话的代芙完成签到 ,获得积分10
54秒前
随性完成签到,获得积分10
54秒前
平淡菠萝完成签到,获得积分10
55秒前
55秒前
56秒前
58秒前
59秒前
搞怪的鱼发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560365
求助须知:如何正确求助?哪些是违规求助? 4645513
关于积分的说明 14675355
捐赠科研通 4586641
什么是DOI,文献DOI怎么找? 2516488
邀请新用户注册赠送积分活动 1490121
关于科研通互助平台的介绍 1460951