Coupled adversarial learning for fusion classification of hyperspectral and LiDAR data

高光谱成像 激光雷达 计算机科学 判别式 特征(语言学) 人工智能 串联(数学) 模式识别(心理学) 遥感 地质学 数学 语言学 组合数学 哲学
作者
Ting Lu,Kexin Ding,Wei Fu,Shutao Li,Anjing Guo
出处
期刊:Information Fusion [Elsevier BV]
卷期号:93: 118-131 被引量:51
标识
DOI:10.1016/j.inffus.2022.12.020
摘要

Hyperspectral image (HSI) provides rich spectral–spatial information and the light detection and ranging (LiDAR) data reflect the elevation information, which can be jointly exploited for better land-cover classification. However, due to different imaging mechanisms, HSI and LiDAR data always present significant image difference, current pixel-wise feature fusion classification methods relying on concatenation or weighted fusion are not effective. To achieve accurate classification result, it is important to extract and fuse similar high-order semantic information and complementary discriminative information contained in multimodal data. In this paper, we propose a novel coupled adversarial learning based classification (CALC) method for fusion classification of HSI and LiDAR data. In specific, a coupled adversarial feature learning (CAFL) sub-network is first trained, to effectively learn the high-order semantic features from HSI and LiDAR data in an unsupervised manner. On one hand, the proposed CAFL sub-network establishes an adversarial game between dual generators and discriminators, so that the learnt features can preserve detail information in HSI and LiDAR data, respectively. On the other hand, by designing weight-sharing and linear fusion structure in the dual generators, we can simultaneously extract similar high-order semantic information and modal-specific complementary information. Meanwhile, a supervised multi-level feature fusion classification (MFFC) sub-network is trained, to further improve the classification performance via adaptive probability fusion strategy. In brief, the low-level, mid-level and high-level features learnt by the CAFL sub-network lead to multiple class estimation probabilities, which are then adaptively combined to generate a final accurate classification result. Both the CAFL and MFFC sub-networks are collaboratively trained by optimizing a designed joint loss function, which consists of unsupervised adversarial loss and supervised classification loss. Overall, by optimizing the joint loss function, the proposed CALC network is pushed to learn highly discriminative fusion features from multimodal data, leading to higher classification accuracies. Extensive experiments on three well-known HSI and LiDAR data sets demonstrate the superior classification performance by the proposed CALC method than several state-of-the-art methods. The source code of the proposed method will be made publicly available at https://github.com/Ding-Kexin/CALC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄腾应助黄琳采纳,获得10
1秒前
1秒前
重要尔曼完成签到,获得积分10
1秒前
xusuizi发布了新的文献求助10
3秒前
King发布了新的文献求助10
3秒前
英勇小蚂蚁完成签到,获得积分10
3秒前
3秒前
在水一方应助ddddd采纳,获得10
3秒前
3秒前
小刀刀发布了新的文献求助10
4秒前
5秒前
韭菜发布了新的文献求助10
5秒前
6秒前
华仔应助momo采纳,获得10
7秒前
7秒前
725发布了新的文献求助10
8秒前
huai给zzz的求助进行了留言
9秒前
科研鸟发布了新的文献求助10
9秒前
小沈发布了新的文献求助10
10秒前
曾珍发布了新的文献求助10
11秒前
科研通AI5应助卓梨采纳,获得10
11秒前
小刀刀完成签到,获得积分10
11秒前
11秒前
美丽的颜演完成签到,获得积分10
12秒前
依米zhang发布了新的文献求助10
12秒前
粽子完成签到,获得积分10
14秒前
安详凡发布了新的文献求助10
15秒前
深情安青应助动人的凡霜采纳,获得10
15秒前
15秒前
16秒前
BINGBONG完成签到,获得积分10
16秒前
擦擦完成签到 ,获得积分10
17秒前
17秒前
17秒前
18秒前
18秒前
雪山飞龙发布了新的文献求助10
19秒前
林橙发布了新的文献求助100
19秒前
Owen应助ericzhouxx采纳,获得10
19秒前
fsky发布了新的文献求助10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966448
求助须知:如何正确求助?哪些是违规求助? 3511917
关于积分的说明 11160753
捐赠科研通 3246652
什么是DOI,文献DOI怎么找? 1793478
邀请新用户注册赠送积分活动 874465
科研通“疑难数据库(出版商)”最低求助积分说明 804403