Coupled adversarial learning for fusion classification of hyperspectral and LiDAR data

高光谱成像 激光雷达 计算机科学 判别式 特征(语言学) 人工智能 串联(数学) 模式识别(心理学) 遥感 地质学 数学 语言学 组合数学 哲学
作者
Ting Lu,Kexin Ding,Wei Fu,Shutao Li,Anjing Guo
出处
期刊:Information Fusion [Elsevier BV]
卷期号:93: 118-131 被引量:51
标识
DOI:10.1016/j.inffus.2022.12.020
摘要

Hyperspectral image (HSI) provides rich spectral–spatial information and the light detection and ranging (LiDAR) data reflect the elevation information, which can be jointly exploited for better land-cover classification. However, due to different imaging mechanisms, HSI and LiDAR data always present significant image difference, current pixel-wise feature fusion classification methods relying on concatenation or weighted fusion are not effective. To achieve accurate classification result, it is important to extract and fuse similar high-order semantic information and complementary discriminative information contained in multimodal data. In this paper, we propose a novel coupled adversarial learning based classification (CALC) method for fusion classification of HSI and LiDAR data. In specific, a coupled adversarial feature learning (CAFL) sub-network is first trained, to effectively learn the high-order semantic features from HSI and LiDAR data in an unsupervised manner. On one hand, the proposed CAFL sub-network establishes an adversarial game between dual generators and discriminators, so that the learnt features can preserve detail information in HSI and LiDAR data, respectively. On the other hand, by designing weight-sharing and linear fusion structure in the dual generators, we can simultaneously extract similar high-order semantic information and modal-specific complementary information. Meanwhile, a supervised multi-level feature fusion classification (MFFC) sub-network is trained, to further improve the classification performance via adaptive probability fusion strategy. In brief, the low-level, mid-level and high-level features learnt by the CAFL sub-network lead to multiple class estimation probabilities, which are then adaptively combined to generate a final accurate classification result. Both the CAFL and MFFC sub-networks are collaboratively trained by optimizing a designed joint loss function, which consists of unsupervised adversarial loss and supervised classification loss. Overall, by optimizing the joint loss function, the proposed CALC network is pushed to learn highly discriminative fusion features from multimodal data, leading to higher classification accuracies. Extensive experiments on three well-known HSI and LiDAR data sets demonstrate the superior classification performance by the proposed CALC method than several state-of-the-art methods. The source code of the proposed method will be made publicly available at https://github.com/Ding-Kexin/CALC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CipherSage应助逺山長采纳,获得10
刚刚
刚刚
完美世界应助拉扣采纳,获得10
1秒前
菜菜完成签到,获得积分10
1秒前
1秒前
1秒前
GH07355018完成签到,获得积分10
2秒前
中国任完成签到 ,获得积分10
2秒前
2秒前
3秒前
星宿完成签到,获得积分10
3秒前
CodeCraft应助Jemmy采纳,获得10
3秒前
4秒前
科研通AI5应助Oil采纳,获得10
4秒前
领导范儿应助研友_LOKqmL采纳,获得10
4秒前
xiaochaoge应助机智的皮皮虾采纳,获得10
4秒前
善学以致用应助LLX123采纳,获得10
5秒前
xxyy发布了新的文献求助10
6秒前
6秒前
游明霞发布了新的文献求助10
6秒前
6秒前
心绒完成签到,获得积分10
6秒前
bodhi发布了新的文献求助10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
7秒前
轻nxwjn完成签到,获得积分10
7秒前
liuyifei发布了新的文献求助20
7秒前
7秒前
情怀应助chen采纳,获得10
8秒前
8秒前
Nyxia发布了新的文献求助10
8秒前
8秒前
浮游应助2780034682采纳,获得10
9秒前
苹果君完成签到 ,获得积分10
9秒前
9秒前
沐沐溪三清完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5068676
求助须知:如何正确求助?哪些是违规求助? 4290262
关于积分的说明 13366925
捐赠科研通 4110092
什么是DOI,文献DOI怎么找? 2250689
邀请新用户注册赠送积分活动 1255935
关于科研通互助平台的介绍 1188480