CASF-Net: Cross-attention and cross-scale fusion network for medical image segmentation

计算机科学 分割 卷积神经网络 人工智能 编码器 特征(语言学) 可扩展性 比例(比率) 图像分割 模式识别(心理学) 机器学习 操作系统 物理 哲学 数据库 量子力学 语言学
作者
Jianwei Zheng,Hao Liu,Yuchao Feng,Jinshan Xu,Liang Zhao
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:229: 107307-107307 被引量:59
标识
DOI:10.1016/j.cmpb.2022.107307
摘要

Automatic segmentation of medical images has progressed greatly owing to the development of convolutional neural networks (CNNs). However, there are two uncertainties with current approaches based on convolutional operations: (1) how to eliminate the general limitations that CNNs lack the ability of modeling long-range dependencies and global contextual interactions, and (2) how to efficiently discover and integrate global and local features that are implied in the image. Notably, these two problems are interconnected, yet previous approaches mainly focus on the first problem and ignore the importance of information integration.In this paper, we propose a novel cross-attention and cross-scale fusion network (CASF-Net), which aims to explicitly tap the potential of dual-branch networks and fully integrate the coarse and fine-grained feature representations. Specifically, the well-designed dual-branch encoder hammers at modeling non-local dependencies and multi-scale contexts, significantly improving the quality of semantic segmentation. Moreover, the proposed cross-attention and cross-scale module efficiently perform multi-scale information fusion, being capable of further exploring the long-range contextual information.Extensive experiments conducted on three different types of medical image segmentation tasks demonstrate the state-of-the-art performance of our proposed method both visually and numerically.This paper assembles the feature representation capabilities of CNN and transformer and proposes cross-attention and cross-scale fusion algorithms. The promising results show new possibilities of using cross-fusion mechanisms in more downstream medical image tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉沉完成签到,获得积分10
刚刚
3秒前
小郑完成签到 ,获得积分10
4秒前
gkhsdvkb发布了新的文献求助10
5秒前
5秒前
李爱国应助朴素的书蝶采纳,获得10
6秒前
8秒前
隐形曼青应助王铂然采纳,获得10
9秒前
生菜发布了新的文献求助10
9秒前
丘比特应助silleaf采纳,获得10
9秒前
zj完成签到 ,获得积分10
9秒前
10秒前
合适的致远完成签到,获得积分10
10秒前
桐桐应助会飞的yu采纳,获得10
11秒前
乐观芷蕊完成签到,获得积分10
12秒前
小蘑菇应助AlexLXJ采纳,获得10
12秒前
12秒前
12秒前
13秒前
辣条发布了新的文献求助20
14秒前
14秒前
充电宝应助mudiboyang采纳,获得10
14秒前
15秒前
外向的碧空完成签到,获得积分10
16秒前
17秒前
18秒前
Yolo发布了新的文献求助10
18秒前
Lntano完成签到 ,获得积分10
19秒前
19秒前
lobule完成签到,获得积分10
19秒前
Ava应助二层楼的十三先生采纳,获得10
19秒前
19秒前
科目三应助复杂依萱采纳,获得30
20秒前
深海蓝鱼发布了新的文献求助10
20秒前
少锋x完成签到,获得积分10
21秒前
烟花应助肖阳采纳,获得10
21秒前
程昌浩发布了新的文献求助10
21秒前
浮生若梦应助iuhgnor采纳,获得10
22秒前
科研通AI6应助零零采纳,获得10
22秒前
哎呀完成签到,获得积分10
23秒前
高分求助中
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5241527
求助须知:如何正确求助?哪些是违规求助? 4408237
关于积分的说明 13721344
捐赠科研通 4277307
什么是DOI,文献DOI怎么找? 2347120
邀请新用户注册赠送积分活动 1344148
关于科研通互助平台的介绍 1302323