CASF-Net: Cross-attention and cross-scale fusion network for medical image segmentation

计算机科学 分割 卷积神经网络 人工智能 编码器 特征(语言学) 可扩展性 比例(比率) 图像分割 模式识别(心理学) 机器学习 操作系统 物理 哲学 数据库 量子力学 语言学
作者
Jianwei Zheng,Hao Liu,Yuchao Feng,Jinshan Xu,Liang Zhao
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:229: 107307-107307 被引量:59
标识
DOI:10.1016/j.cmpb.2022.107307
摘要

Automatic segmentation of medical images has progressed greatly owing to the development of convolutional neural networks (CNNs). However, there are two uncertainties with current approaches based on convolutional operations: (1) how to eliminate the general limitations that CNNs lack the ability of modeling long-range dependencies and global contextual interactions, and (2) how to efficiently discover and integrate global and local features that are implied in the image. Notably, these two problems are interconnected, yet previous approaches mainly focus on the first problem and ignore the importance of information integration.In this paper, we propose a novel cross-attention and cross-scale fusion network (CASF-Net), which aims to explicitly tap the potential of dual-branch networks and fully integrate the coarse and fine-grained feature representations. Specifically, the well-designed dual-branch encoder hammers at modeling non-local dependencies and multi-scale contexts, significantly improving the quality of semantic segmentation. Moreover, the proposed cross-attention and cross-scale module efficiently perform multi-scale information fusion, being capable of further exploring the long-range contextual information.Extensive experiments conducted on three different types of medical image segmentation tasks demonstrate the state-of-the-art performance of our proposed method both visually and numerically.This paper assembles the feature representation capabilities of CNN and transformer and proposes cross-attention and cross-scale fusion algorithms. The promising results show new possibilities of using cross-fusion mechanisms in more downstream medical image tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
纯真雁菱发布了新的文献求助10
1秒前
娃娃哈完成签到,获得积分10
2秒前
Lucas应助dingdign采纳,获得10
2秒前
李健的小迷弟应助baiyi采纳,获得10
3秒前
4秒前
搞怪元彤发布了新的文献求助10
4秒前
5秒前
5秒前
孙雪松完成签到 ,获得积分10
6秒前
7秒前
CipherSage应助小刘采纳,获得10
7秒前
李爱国应助lulu采纳,获得10
8秒前
江恋发布了新的文献求助10
8秒前
zhanglh123完成签到,获得积分10
9秒前
发过的烦得很完成签到,获得积分10
10秒前
哈哈哈发布了新的文献求助10
11秒前
sadwawa完成签到,获得积分10
11秒前
12秒前
搞怪元彤完成签到,获得积分10
12秒前
852发布了新的文献求助10
12秒前
13秒前
追寻听云完成签到,获得积分10
13秒前
13秒前
14秒前
Lucas应助iiiyyy采纳,获得10
14秒前
wxyshare举报roo0求助涉嫌违规
14秒前
15秒前
Daisy完成签到,获得积分10
15秒前
隐形曼青应助sadwawa采纳,获得10
16秒前
123发布了新的文献求助10
17秒前
Venus66689发布了新的文献求助10
18秒前
淡淡元容发布了新的文献求助10
18秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
范森林发布了新的文献求助20
20秒前
小小怪完成签到,获得积分10
21秒前
23秒前
健壮的凉面完成签到,获得积分10
26秒前
26秒前
宋早楠发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5124206
求助须知:如何正确求助?哪些是违规求助? 4328520
关于积分的说明 13487475
捐赠科研通 4162916
什么是DOI,文献DOI怎么找? 2281925
邀请新用户注册赠送积分活动 1283217
关于科研通互助平台的介绍 1222406