CASF-Net: Cross-attention and cross-scale fusion network for medical image segmentation

计算机科学 分割 卷积神经网络 人工智能 编码器 特征(语言学) 可扩展性 比例(比率) 图像分割 模式识别(心理学) 机器学习 操作系统 物理 哲学 数据库 量子力学 语言学
作者
Jianwei Zheng,Hao Liu,Yuchao Feng,Jinshan Xu,Liang Zhao
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:229: 107307-107307 被引量:59
标识
DOI:10.1016/j.cmpb.2022.107307
摘要

Automatic segmentation of medical images has progressed greatly owing to the development of convolutional neural networks (CNNs). However, there are two uncertainties with current approaches based on convolutional operations: (1) how to eliminate the general limitations that CNNs lack the ability of modeling long-range dependencies and global contextual interactions, and (2) how to efficiently discover and integrate global and local features that are implied in the image. Notably, these two problems are interconnected, yet previous approaches mainly focus on the first problem and ignore the importance of information integration.In this paper, we propose a novel cross-attention and cross-scale fusion network (CASF-Net), which aims to explicitly tap the potential of dual-branch networks and fully integrate the coarse and fine-grained feature representations. Specifically, the well-designed dual-branch encoder hammers at modeling non-local dependencies and multi-scale contexts, significantly improving the quality of semantic segmentation. Moreover, the proposed cross-attention and cross-scale module efficiently perform multi-scale information fusion, being capable of further exploring the long-range contextual information.Extensive experiments conducted on three different types of medical image segmentation tasks demonstrate the state-of-the-art performance of our proposed method both visually and numerically.This paper assembles the feature representation capabilities of CNN and transformer and proposes cross-attention and cross-scale fusion algorithms. The promising results show new possibilities of using cross-fusion mechanisms in more downstream medical image tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
米十二发布了新的文献求助10
刚刚
刚刚
1秒前
Master-wang完成签到,获得积分10
1秒前
dandany发布了新的文献求助20
1秒前
1秒前
1秒前
1秒前
1秒前
哇哦哦完成签到,获得积分20
2秒前
rioo发布了新的文献求助10
2秒前
花花发布了新的文献求助30
2秒前
3秒前
小刘完成签到,获得积分10
5秒前
聪明酒窝完成签到,获得积分10
5秒前
6秒前
6秒前
韦觅松完成签到,获得积分10
6秒前
唠叨的小丸子完成签到,获得积分10
6秒前
自信鑫鹏完成签到,获得积分10
7秒前
杨杨完成签到,获得积分10
7秒前
7秒前
SS2D完成签到,获得积分10
7秒前
超帅的遥完成签到,获得积分10
7秒前
8秒前
8秒前
yiyiyiyiyi//完成签到,获得积分10
8秒前
ding应助外向蜡烛采纳,获得10
8秒前
跳跃的翼完成签到,获得积分10
9秒前
无奈冥发布了新的文献求助10
10秒前
昏睡的傲菡完成签到 ,获得积分10
10秒前
Stella完成签到,获得积分10
10秒前
BU会完成签到,获得积分10
10秒前
阿姜姜姜姜应助GL采纳,获得10
11秒前
11秒前
12秒前
杨杨发布了新的文献求助10
12秒前
12秒前
feloys完成签到,获得积分0
12秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953878
求助须知:如何正确求助?哪些是违规求助? 3499920
关于积分的说明 11097238
捐赠科研通 3230331
什么是DOI,文献DOI怎么找? 1785920
邀请新用户注册赠送积分活动 869697
科研通“疑难数据库(出版商)”最低求助积分说明 801572