CASF-Net: Cross-attention and cross-scale fusion network for medical image segmentation

计算机科学 分割 卷积神经网络 人工智能 编码器 特征(语言学) 可扩展性 比例(比率) 图像分割 模式识别(心理学) 机器学习 操作系统 物理 哲学 数据库 量子力学 语言学
作者
Jianwei Zheng,Hao Liu,Yuchao Feng,Jinshan Xu,Liang Zhao
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:229: 107307-107307 被引量:59
标识
DOI:10.1016/j.cmpb.2022.107307
摘要

Automatic segmentation of medical images has progressed greatly owing to the development of convolutional neural networks (CNNs). However, there are two uncertainties with current approaches based on convolutional operations: (1) how to eliminate the general limitations that CNNs lack the ability of modeling long-range dependencies and global contextual interactions, and (2) how to efficiently discover and integrate global and local features that are implied in the image. Notably, these two problems are interconnected, yet previous approaches mainly focus on the first problem and ignore the importance of information integration.In this paper, we propose a novel cross-attention and cross-scale fusion network (CASF-Net), which aims to explicitly tap the potential of dual-branch networks and fully integrate the coarse and fine-grained feature representations. Specifically, the well-designed dual-branch encoder hammers at modeling non-local dependencies and multi-scale contexts, significantly improving the quality of semantic segmentation. Moreover, the proposed cross-attention and cross-scale module efficiently perform multi-scale information fusion, being capable of further exploring the long-range contextual information.Extensive experiments conducted on three different types of medical image segmentation tasks demonstrate the state-of-the-art performance of our proposed method both visually and numerically.This paper assembles the feature representation capabilities of CNN and transformer and proposes cross-attention and cross-scale fusion algorithms. The promising results show new possibilities of using cross-fusion mechanisms in more downstream medical image tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助橙子采纳,获得10
1秒前
ZhouQixing发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
syr完成签到,获得积分10
3秒前
abcd_1067发布了新的文献求助10
3秒前
搜集达人应助知非采纳,获得10
5秒前
jackten发布了新的文献求助10
5秒前
5秒前
123zyx发布了新的文献求助10
5秒前
6秒前
Vizz发布了新的文献求助10
7秒前
7秒前
8秒前
wanci应助亚铁氰化钾采纳,获得10
8秒前
yongjiang完成签到,获得积分10
9秒前
高高亦竹发布了新的文献求助30
9秒前
KyrieIrving关注了科研通微信公众号
9秒前
NexusExplorer应助甜甜斓采纳,获得10
10秒前
搜集达人应助che采纳,获得10
11秒前
科研通AI5应助慢慢采纳,获得10
11秒前
11秒前
balabala完成签到,获得积分20
12秒前
雷雷发布了新的文献求助10
12秒前
12秒前
烟花应助puppet采纳,获得10
13秒前
稗子发布了新的文献求助10
14秒前
小蘑菇应助妮子采纳,获得10
15秒前
16秒前
顾矜应助Yun yun采纳,获得10
16秒前
张颖发布了新的文献求助10
17秒前
17秒前
77完成签到,获得积分10
18秒前
情怀应助舒心芷荷采纳,获得10
18秒前
Gonna留下了新的社区评论
18秒前
athenalin1988发布了新的文献求助10
18秒前
haoqisheng发布了新的文献求助10
19秒前
冰美式不加糖完成签到,获得积分10
19秒前
ll发布了新的文献求助10
19秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208817
求助须知:如何正确求助?哪些是违规求助? 4386099
关于积分的说明 13660012
捐赠科研通 4245182
什么是DOI,文献DOI怎么找? 2329154
邀请新用户注册赠送积分活动 1326960
关于科研通互助平台的介绍 1279228