CASF-Net: Cross-attention and cross-scale fusion network for medical image segmentation

计算机科学 分割 卷积神经网络 人工智能 编码器 特征(语言学) 可扩展性 比例(比率) 图像分割 模式识别(心理学) 机器学习 操作系统 物理 哲学 数据库 量子力学 语言学
作者
Jianwei Zheng,Hao Liu,Yuchao Feng,Jinshan Xu,Liang Zhao
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:229: 107307-107307 被引量:59
标识
DOI:10.1016/j.cmpb.2022.107307
摘要

Automatic segmentation of medical images has progressed greatly owing to the development of convolutional neural networks (CNNs). However, there are two uncertainties with current approaches based on convolutional operations: (1) how to eliminate the general limitations that CNNs lack the ability of modeling long-range dependencies and global contextual interactions, and (2) how to efficiently discover and integrate global and local features that are implied in the image. Notably, these two problems are interconnected, yet previous approaches mainly focus on the first problem and ignore the importance of information integration.In this paper, we propose a novel cross-attention and cross-scale fusion network (CASF-Net), which aims to explicitly tap the potential of dual-branch networks and fully integrate the coarse and fine-grained feature representations. Specifically, the well-designed dual-branch encoder hammers at modeling non-local dependencies and multi-scale contexts, significantly improving the quality of semantic segmentation. Moreover, the proposed cross-attention and cross-scale module efficiently perform multi-scale information fusion, being capable of further exploring the long-range contextual information.Extensive experiments conducted on three different types of medical image segmentation tasks demonstrate the state-of-the-art performance of our proposed method both visually and numerically.This paper assembles the feature representation capabilities of CNN and transformer and proposes cross-attention and cross-scale fusion algorithms. The promising results show new possibilities of using cross-fusion mechanisms in more downstream medical image tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
下路润发布了新的文献求助10
刚刚
刚刚
momo完成签到,获得积分10
刚刚
Ava应助紧张的世德采纳,获得10
刚刚
莫愁完成签到,获得积分10
1秒前
在水一方应助山茶采纳,获得10
1秒前
小饼干完成签到,获得积分10
1秒前
芽芽配茄子完成签到,获得积分10
1秒前
凯凯发布了新的文献求助10
1秒前
科研通AI5应助Witness采纳,获得30
1秒前
2秒前
2秒前
XH完成签到,获得积分10
2秒前
Jerry完成签到,获得积分10
2秒前
2秒前
静静完成签到,获得积分10
3秒前
CipherSage应助冰柠檬采纳,获得10
3秒前
无敌鱼发布了新的文献求助10
3秒前
xiaoyuzhou发布了新的文献求助10
3秒前
完美世界应助asilamu采纳,获得10
4秒前
4秒前
gfqdts66发布了新的文献求助10
4秒前
4秒前
4秒前
科目三应助跨越者采纳,获得10
5秒前
5秒前
xqq发布了新的文献求助10
5秒前
无花果应助聪明的幻枫采纳,获得10
5秒前
Dr.Mary完成签到,获得积分10
6秒前
怡然平萱发布了新的文献求助10
6秒前
我是老大应助kmkz采纳,获得30
7秒前
快乐的皮卡丘完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
uu发布了新的文献求助10
9秒前
充电宝应助凉兮采纳,获得10
9秒前
LT发布了新的文献求助10
9秒前
郁李完成签到,获得积分20
9秒前
斯文败类应助小何同学采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4559024
求助须知:如何正确求助?哪些是违规求助? 3985748
关于积分的说明 12340214
捐赠科研通 3656286
什么是DOI,文献DOI怎么找? 2014287
邀请新用户注册赠送积分活动 1049131
科研通“疑难数据库(出版商)”最低求助积分说明 937477