CASF-Net: Cross-attention and cross-scale fusion network for medical image segmentation

计算机科学 分割 卷积神经网络 人工智能 编码器 特征(语言学) 可扩展性 比例(比率) 图像分割 模式识别(心理学) 机器学习 操作系统 物理 哲学 数据库 量子力学 语言学
作者
Jianwei Zheng,Hao Liu,Yuchao Feng,Jinshan Xu,Liang Zhao
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:229: 107307-107307 被引量:59
标识
DOI:10.1016/j.cmpb.2022.107307
摘要

Automatic segmentation of medical images has progressed greatly owing to the development of convolutional neural networks (CNNs). However, there are two uncertainties with current approaches based on convolutional operations: (1) how to eliminate the general limitations that CNNs lack the ability of modeling long-range dependencies and global contextual interactions, and (2) how to efficiently discover and integrate global and local features that are implied in the image. Notably, these two problems are interconnected, yet previous approaches mainly focus on the first problem and ignore the importance of information integration.In this paper, we propose a novel cross-attention and cross-scale fusion network (CASF-Net), which aims to explicitly tap the potential of dual-branch networks and fully integrate the coarse and fine-grained feature representations. Specifically, the well-designed dual-branch encoder hammers at modeling non-local dependencies and multi-scale contexts, significantly improving the quality of semantic segmentation. Moreover, the proposed cross-attention and cross-scale module efficiently perform multi-scale information fusion, being capable of further exploring the long-range contextual information.Extensive experiments conducted on three different types of medical image segmentation tasks demonstrate the state-of-the-art performance of our proposed method both visually and numerically.This paper assembles the feature representation capabilities of CNN and transformer and proposes cross-attention and cross-scale fusion algorithms. The promising results show new possibilities of using cross-fusion mechanisms in more downstream medical image tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ding应助光亮的思柔采纳,获得10
1秒前
西啃发布了新的文献求助10
1秒前
1秒前
2秒前
风登楼完成签到,获得积分10
2秒前
科研通AI5应助自信念云采纳,获得30
2秒前
3秒前
3秒前
11122333发布了新的文献求助30
3秒前
yuanyuanzhao发布了新的文献求助10
3秒前
sam发布了新的文献求助10
4秒前
5秒前
善学以致用应助阿洁采纳,获得10
6秒前
陈nn发布了新的文献求助10
6秒前
6秒前
6秒前
science发布了新的文献求助10
8秒前
湖湖发布了新的文献求助10
8秒前
sclorry发布了新的文献求助10
8秒前
Jasper应助hyominhsu采纳,获得10
8秒前
商毛毛完成签到,获得积分10
8秒前
9秒前
云云云完成签到,获得积分10
10秒前
费1发布了新的文献求助10
11秒前
共享精神应助笑开口采纳,获得10
11秒前
12秒前
yjwang完成签到,获得积分10
12秒前
13秒前
xiaoshuai应助儒雅的若剑采纳,获得10
13秒前
13秒前
13秒前
sam完成签到,获得积分10
14秒前
行走人生发布了新的文献求助10
14秒前
14秒前
计划完成签到,获得积分10
15秒前
16秒前
小太阳发布了新的文献求助10
17秒前
18秒前
阿洁发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4886200
求助须知:如何正确求助?哪些是违规求助? 4171169
关于积分的说明 12943805
捐赠科研通 3931690
什么是DOI,文献DOI怎么找? 2157185
邀请新用户注册赠送积分活动 1175580
关于科研通互助平台的介绍 1080137