光热治疗
材料科学
制作
纳米技术
纳米材料
纳米颗粒
灵活性(工程)
热稳定性
化学工程
统计
医学
替代医学
病理
工程类
数学
作者
Xinyan Chen,Qi Yu,Bin He,Yu Liang,Lei Yu,Jian Sun
标识
DOI:10.1021/acsami.3c02420
摘要
Au nanozymes are extensively researched for their photothermal effect and catalytic performance, but overcoming the inherent defects of poor dispersibility and thermal stability through complementary materials will expand their prospects for biological applications. Herein, several novel CAu nanozymes were fabricated by in situ reduction of chloroauric acid on hollow carbon nanospheres (HCNs). Through regulating the number of reductions, sesame ball-shaped CAu (sCAu) with highly dispersed Au nanoparticles and diversity-shaped CAu (dCAu) were obtained. The number and morphology of loaded Au nanoparticles, absorption spectra, and hydrophilicity of CAu nanozymes were systematically characterized to demonstrate the flexibility of this novel method. The high-efficiency peroxidase-like sCAu0.3 nanozyme with hyperthermia-activated property was then screened for later bio-application. It is worth mentioning that its photothermal-promoted peroxidase-like activity could be achieved under near-infrared laser irradiation. Moreover, sCAu0.3 could specifically achieve glutathione detection in human blood samples. This method will provide a protocol for the regulation of CAu nanozymes to adapt to bio-detection applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI