Prognostic evaluation of patients with glioblastoma using a new score prediction model

医学 比例危险模型 危险系数 内科学 单变量 单变量分析 四分位间距 胶质母细胞瘤 肿瘤科 多元分析 多元统计 生存分析 推车 置信区间 统计 癌症研究 数学 机械工程 工程类
作者
Lei She,Xiao‐Yuan Mao,Lin Su,Zhaoqian Liu
出处
期刊:Ejso [Elsevier BV]
卷期号:49 (9): 106902-106902 被引量:1
标识
DOI:10.1016/j.ejso.2023.04.001
摘要

Despite the wide reportage of prognostic factors for glioblastoma (GBM), it is difficult to determine how these factors interact to affect patients' survival. To determine the combination of prognostic factors, we retrospectively analyzed the clinic data of 248 IDH wild-type GBM patients and built a novel prediction model. The survival variables of patients were identified via univariate and multivariate analyses. In addition, the score prediction models were constructed by combining classification and regression tree (CART) analysis with Cox regression analysis. Finally, the prediction model was internally validated using the bootstrap method. Patients were followed for a median of 34.4 (interquartile range, 26.1-46.0) months. Multivariate analysis identified gross total resection (GTR) (HR 0.50, 95% CI: 0.38-0.67), unopened ventricles (HR 0.75 [0.57-0.99]), and MGMT methylation (HR 0.56 [0.41-0.76]) as favorable independent prognostic factors for PFS. GTR (HR 0.67 [0.49-0.92]), unopened ventricles (HR 0.60 [0.44-0.82]), and MGMT methylation (HR 0.54 [0.38-0.76]) were favorable independent prognostic factors for OS. In the process of building the model, we incorporated GTR, ventricular opening, MGMT methylation status, and age. The model had six and five terminal nodules in PFS and OS respectively. We grouped terminal nodes with similar hazard ratios together to form three sub-groups with different PFS and OS (P < 0.001). After the internal verification of bootstrap method, the model had a good fitting and calibration. GTR, unopened ventricles, and MGMT methylation were independently associated with more satisfactory survival. The novel score prediction model which we construct can provide a prognostic reference for GBM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
浅笑成风完成签到,获得积分10
1秒前
小二郎应助123采纳,获得10
1秒前
乐乐应助心灵美的白卉采纳,获得10
1秒前
chai完成签到,获得积分10
2秒前
浅浅发布了新的文献求助10
2秒前
Lonala完成签到,获得积分10
3秒前
共享精神应助宋百言采纳,获得30
4秒前
4秒前
11发布了新的文献求助10
4秒前
无奈的远望完成签到 ,获得积分10
5秒前
6秒前
Lin应助韩其江采纳,获得10
7秒前
迷雾完成签到,获得积分10
7秒前
科研通AI5应助小猪采纳,获得10
8秒前
乐观啤酒应助yx阿聪采纳,获得10
9秒前
重要的灵完成签到,获得积分20
9秒前
可口可乐发布了新的文献求助10
9秒前
qqq完成签到,获得积分10
10秒前
无限飞扬完成签到,获得积分10
10秒前
11秒前
12秒前
科研通AI5应助Rorea采纳,获得30
13秒前
小吴科研顺利完成签到 ,获得积分10
13秒前
Iwan完成签到,获得积分10
13秒前
爆米花应助可口可乐采纳,获得10
15秒前
15秒前
winew发布了新的文献求助10
16秒前
舒心谷雪完成签到 ,获得积分10
16秒前
发sci发布了新的文献求助10
18秒前
18秒前
传奇3应助wu采纳,获得10
19秒前
19秒前
19秒前
21秒前
SYLH应助嘉棯采纳,获得20
21秒前
21秒前
科研通AI5应助浓雾采纳,获得10
21秒前
亚秋完成签到,获得积分10
21秒前
科研通AI5应助小妮子采纳,获得30
21秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3743782
求助须知:如何正确求助?哪些是违规求助? 3286427
关于积分的说明 10050288
捐赠科研通 3002956
什么是DOI,文献DOI怎么找? 1648631
邀请新用户注册赠送积分活动 784708
科研通“疑难数据库(出版商)”最低求助积分说明 750802