亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Diabetic Retinopathy (DR) Image Synthesis Using DCGAN and Classification of DR Using Transfer Learning Approaches

计算机科学 人工智能 概化理论 失明 糖尿病性视网膜病变 深度学习 验光服务 医学 数学 糖尿病 统计 内分泌学
作者
Yerrarapu Sravani Devi,S. Phani Kumar
出处
期刊:International Journal of Image and Graphics [World Scientific]
卷期号:24 (05) 被引量:2
标识
DOI:10.1142/s0219467823400090
摘要

Diabetic retinopathy (DR) refers to a diabetes complexity that immensely impacts the eyes. This is classified into 5 various stages of the severity in accordance with the international convention. Despite that, optimization of a grading model to have a robust generalizability needs a huge number of balanced training data that is very complicated to gather, especially for greater levels of severity. A vast amount of medical data is complex and has a very high-priced method which requires cooperation between the clinics and researchers. The issue is usually attempted to be figured out with the usage of the traditional methods of data augmentation by making certain changes to images of retina dataset for instance rotation, cropping, size and zooming. In this suggested paper, the latest methods or techniques of data augmentation is exhibited which is called as deep convolutional generative adversial network (DC-GAN) and variational auto encoders (VAE). This is a particular method which is responsible for the production of artificial medical images. In addition to this, to improve DR, we can also take the aid of the classification models which are resnet50, densenet201, InceptionV3 and VGG19 for the purpose of classification of the eye related diseases. The proposed method is depicted on the Asia Pacific Tele-Ophthalmology Society (APTOS)-Blindness dataset. First, the present-day online data augmentation techniques have been utilized, and the artificial images of retina are produced by the ease of DCGAN. Then, a method of classifying is used for both techniques. Ultimately, after the method training which is done by using the real & synthetic clinical images and the outcome exhibits which the proposed model determines every stage or phase of DR and achieve the accuracy of 98.66% with using of ResNet-50 which is contrary to the current existing techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
歪踢踢发布了新的文献求助30
1秒前
点一个随机昵称完成签到 ,获得积分10
2秒前
3秒前
LIU完成签到 ,获得积分10
10秒前
丘比特应助欢喜怀绿采纳,获得30
10秒前
FashionBoy应助咖啡续命采纳,获得10
11秒前
12秒前
了晨完成签到 ,获得积分10
12秒前
吹皱一湖春水完成签到 ,获得积分10
17秒前
mumu发布了新的文献求助10
17秒前
21秒前
8R60d8应助科研通管家采纳,获得10
24秒前
8R60d8应助科研通管家采纳,获得10
24秒前
赘婿应助科研通管家采纳,获得10
24秒前
8R60d8应助科研通管家采纳,获得10
24秒前
8R60d8应助科研通管家采纳,获得10
24秒前
25秒前
风中小夏发布了新的文献求助10
30秒前
科研通AI2S应助yangon采纳,获得10
30秒前
Penny完成签到 ,获得积分10
36秒前
37秒前
38秒前
39秒前
小野发布了新的文献求助10
41秒前
42秒前
oleskarabach发布了新的文献求助10
43秒前
43秒前
顾矜应助TJY采纳,获得10
46秒前
朴素若枫完成签到,获得积分10
46秒前
咖啡续命发布了新的文献求助10
49秒前
云深完成签到 ,获得积分10
53秒前
56秒前
Atlantis完成签到 ,获得积分10
56秒前
58秒前
在水一方应助zzzzzttt采纳,获得10
1分钟前
早晚完成签到 ,获得积分10
1分钟前
1分钟前
Yasong发布了新的文献求助10
1分钟前
大个应助英俊的雁易采纳,获得10
1分钟前
1分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234502
求助须知:如何正确求助?哪些是违规求助? 2880883
关于积分的说明 8217231
捐赠科研通 2548429
什么是DOI,文献DOI怎么找? 1377761
科研通“疑难数据库(出版商)”最低求助积分说明 647999
邀请新用户注册赠送积分活动 623314