Virtual high-resolution MR angiography from non-angiographic multi-contrast MRIs: synthetic vascular model populations for in-silico trials

计算机科学 人工智能 磁共振血管造影 鉴别器 磁共振成像 计算机视觉 模式识别(心理学) 放射科 医学 探测器 电信
作者
Yan Xia,Nishant Ravikumar,Toni Lassila,Alejandro F. Frangi
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:87: 102814-102814 被引量:4
标识
DOI:10.1016/j.media.2023.102814
摘要

Despite success on multi-contrast MR image synthesis, generating specific modalities remains challenging. Those include Magnetic Resonance Angiography (MRA) that highlights details of vascular anatomy using specialised imaging sequences for emphasising inflow effect. This work proposes an end-to-end generative adversarial network that can synthesise anatomically plausible, high-resolution 3D MRA images using commonly acquired multi-contrast MR images (e.g. T1/T2/PD-weighted MR images) for the same subject whilst preserving the continuity of vascular anatomy. A reliable technique for MRA synthesis would unleash the research potential of very few population databases with imaging modalities (such as MRA) that enable quantitative characterisation of whole-brain vasculature. Our work is motivated by the need to generate digital twins and virtual patients of cerebrovascular anatomy for in-silico studies and/or in-silico trials. We propose a dedicated generator and discriminator that leverage the shared and complementary features of multi-source images. We design a composite loss function for emphasising vascular properties by minimising the statistical difference between the feature representations of the target images and the synthesised outputs in both 3D volumetric and 2D projection domains. Experimental results show that the proposed method can synthesise high-quality MRA images and outperform the state-of-the-art generative models both qualitatively and quantitatively. The importance assessment reveals that T2 and PD-weighted images are better predictors of MRA images than T1; and PD-weighted images contribute to better visibility of small vessel branches towards the peripheral regions. In addition, the proposed approach can generalise to unseen data acquired at different imaging centres with different scanners, whilst synthesising MRAs and vascular geometries that maintain vessel continuity. The results show the potential for use of the proposed approach to generating digital twin cohorts of cerebrovascular anatomy at scale from structural MR images typically acquired in population imaging initiatives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月月鸟完成签到,获得积分10
刚刚
justin发布了新的文献求助10
1秒前
lemon发布了新的文献求助10
1秒前
1秒前
2秒前
damieob完成签到,获得积分20
2秒前
angan完成签到,获得积分10
2秒前
月月鸟发布了新的文献求助20
3秒前
3秒前
poorzz完成签到,获得积分10
3秒前
承序完成签到,获得积分10
4秒前
华仔应助yf采纳,获得10
5秒前
GanGan发布了新的文献求助10
5秒前
LUCKY发布了新的文献求助10
7秒前
黄龙完成签到,获得积分10
7秒前
黑骑士完成签到,获得积分10
8秒前
隐形曼青应助wwww采纳,获得10
8秒前
Youth发布了新的文献求助10
9秒前
11秒前
12秒前
14秒前
15秒前
ff不吃芹菜完成签到,获得积分10
16秒前
18秒前
上官若男应助科研通管家采纳,获得10
18秒前
bkagyin应助科研通管家采纳,获得10
18秒前
乐乐应助科研通管家采纳,获得10
18秒前
我是老大应助科研通管家采纳,获得10
18秒前
orixero应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
19秒前
丘比特应助周周采纳,获得10
19秒前
LHD完成签到,获得积分20
20秒前
jade发布了新的文献求助10
20秒前
23秒前
24秒前
CipherSage应助苏满天采纳,获得10
25秒前
lumei661314完成签到,获得积分10
26秒前
深情安青应助Youth采纳,获得10
26秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161200
求助须知:如何正确求助?哪些是违规求助? 2812600
关于积分的说明 7895715
捐赠科研通 2471437
什么是DOI,文献DOI怎么找? 1316018
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602112