Virtual high-resolution MR angiography from non-angiographic multi-contrast MRIs: synthetic vascular model populations for in-silico trials

计算机科学 人工智能 磁共振血管造影 鉴别器 磁共振成像 计算机视觉 模式识别(心理学) 放射科 医学 探测器 电信
作者
Yan Xia,Nishant Ravikumar,Toni Lassila,Alejandro F. Frangi
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:87: 102814-102814 被引量:9
标识
DOI:10.1016/j.media.2023.102814
摘要

Despite success on multi-contrast MR image synthesis, generating specific modalities remains challenging. Those include Magnetic Resonance Angiography (MRA) that highlights details of vascular anatomy using specialised imaging sequences for emphasising inflow effect. This work proposes an end-to-end generative adversarial network that can synthesise anatomically plausible, high-resolution 3D MRA images using commonly acquired multi-contrast MR images (e.g. T1/T2/PD-weighted MR images) for the same subject whilst preserving the continuity of vascular anatomy. A reliable technique for MRA synthesis would unleash the research potential of very few population databases with imaging modalities (such as MRA) that enable quantitative characterisation of whole-brain vasculature. Our work is motivated by the need to generate digital twins and virtual patients of cerebrovascular anatomy for in-silico studies and/or in-silico trials. We propose a dedicated generator and discriminator that leverage the shared and complementary features of multi-source images. We design a composite loss function for emphasising vascular properties by minimising the statistical difference between the feature representations of the target images and the synthesised outputs in both 3D volumetric and 2D projection domains. Experimental results show that the proposed method can synthesise high-quality MRA images and outperform the state-of-the-art generative models both qualitatively and quantitatively. The importance assessment reveals that T2 and PD-weighted images are better predictors of MRA images than T1; and PD-weighted images contribute to better visibility of small vessel branches towards the peripheral regions. In addition, the proposed approach can generalise to unseen data acquired at different imaging centres with different scanners, whilst synthesising MRAs and vascular geometries that maintain vessel continuity. The results show the potential for use of the proposed approach to generating digital twin cohorts of cerebrovascular anatomy at scale from structural MR images typically acquired in population imaging initiatives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Czt完成签到,获得积分10
2秒前
2秒前
小透明发布了新的文献求助10
2秒前
Xu完成签到,获得积分10
4秒前
4秒前
5秒前
soso完成签到,获得积分10
5秒前
5秒前
李爱国应助神雕001采纳,获得10
5秒前
7秒前
7秒前
小雨完成签到,获得积分10
7秒前
7秒前
搜集达人应助HH采纳,获得10
8秒前
soso发布了新的文献求助10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
Owen应助兔孖采纳,获得10
8秒前
9秒前
chenyun完成签到,获得积分10
9秒前
ccc关闭了ccc文献求助
9秒前
Czt发布了新的文献求助10
9秒前
wanci应助知性的奎采纳,获得10
10秒前
10秒前
10秒前
个性严青发布了新的文献求助10
11秒前
12秒前
ke发布了新的文献求助10
12秒前
赘婿应助冯俊驰采纳,获得10
13秒前
袁江堰完成签到 ,获得积分10
13秒前
Crisp完成签到,获得积分10
15秒前
16秒前
alili完成签到,获得积分10
16秒前
hua发布了新的文献求助10
16秒前
17秒前
18秒前
ha发布了新的文献求助10
19秒前
七彩光完成签到,获得积分10
20秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
Cowries - A Guide to the Gastropod Family Cypraeidae. Volume 2: Shells and Animals 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950964
求助须知:如何正确求助?哪些是违规求助? 4213785
关于积分的说明 13105631
捐赠科研通 3995556
什么是DOI,文献DOI怎么找? 2186991
邀请新用户注册赠送积分活动 1202197
关于科研通互助平台的介绍 1115436