Virtual high-resolution MR angiography from non-angiographic multi-contrast MRIs: synthetic vascular model populations for in-silico trials

计算机科学 人工智能 磁共振血管造影 鉴别器 磁共振成像 计算机视觉 模式识别(心理学) 放射科 医学 探测器 电信
作者
Yan Xia,Nishant Ravikumar,Toni Lassila,Alejandro F. Frangi
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:87: 102814-102814 被引量:9
标识
DOI:10.1016/j.media.2023.102814
摘要

Despite success on multi-contrast MR image synthesis, generating specific modalities remains challenging. Those include Magnetic Resonance Angiography (MRA) that highlights details of vascular anatomy using specialised imaging sequences for emphasising inflow effect. This work proposes an end-to-end generative adversarial network that can synthesise anatomically plausible, high-resolution 3D MRA images using commonly acquired multi-contrast MR images (e.g. T1/T2/PD-weighted MR images) for the same subject whilst preserving the continuity of vascular anatomy. A reliable technique for MRA synthesis would unleash the research potential of very few population databases with imaging modalities (such as MRA) that enable quantitative characterisation of whole-brain vasculature. Our work is motivated by the need to generate digital twins and virtual patients of cerebrovascular anatomy for in-silico studies and/or in-silico trials. We propose a dedicated generator and discriminator that leverage the shared and complementary features of multi-source images. We design a composite loss function for emphasising vascular properties by minimising the statistical difference between the feature representations of the target images and the synthesised outputs in both 3D volumetric and 2D projection domains. Experimental results show that the proposed method can synthesise high-quality MRA images and outperform the state-of-the-art generative models both qualitatively and quantitatively. The importance assessment reveals that T2 and PD-weighted images are better predictors of MRA images than T1; and PD-weighted images contribute to better visibility of small vessel branches towards the peripheral regions. In addition, the proposed approach can generalise to unseen data acquired at different imaging centres with different scanners, whilst synthesising MRAs and vascular geometries that maintain vessel continuity. The results show the potential for use of the proposed approach to generating digital twin cohorts of cerebrovascular anatomy at scale from structural MR images typically acquired in population imaging initiatives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sunyidan完成签到,获得积分10
1秒前
1秒前
tian完成签到,获得积分10
2秒前
苏瑾完成签到 ,获得积分10
3秒前
阔达栾发布了新的文献求助10
3秒前
积极的绫发布了新的文献求助10
4秒前
ppl完成签到,获得积分10
4秒前
5秒前
淡然妙松发布了新的文献求助10
5秒前
阔达的疾发布了新的文献求助10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
8秒前
骑着火车撵火箭完成签到,获得积分10
8秒前
cuigao完成签到,获得积分10
8秒前
HJJHJH发布了新的文献求助10
9秒前
乐乐应助一二采纳,获得10
9秒前
虚幻山水完成签到,获得积分10
10秒前
慕青应助茶与香采纳,获得10
10秒前
12秒前
耍酷吐司发布了新的文献求助30
13秒前
13秒前
李小羊完成签到 ,获得积分10
14秒前
顾矜应助须尽欢采纳,获得10
14秒前
无眠月发布了新的文献求助10
14秒前
852应助壮观以松采纳,获得10
14秒前
纯真的晴儿完成签到 ,获得积分10
15秒前
15秒前
Owen应助科研通管家采纳,获得10
15秒前
15秒前
bkagyin应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
16秒前
16秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771037
求助须知:如何正确求助?哪些是违规求助? 5589257
关于积分的说明 15426419
捐赠科研通 4904429
什么是DOI,文献DOI怎么找? 2638747
邀请新用户注册赠送积分活动 1586546
关于科研通互助平台的介绍 1541706