Virtual high-resolution MR angiography from non-angiographic multi-contrast MRIs: synthetic vascular model populations for in-silico trials

计算机科学 人工智能 磁共振血管造影 鉴别器 磁共振成像 计算机视觉 模式识别(心理学) 放射科 医学 探测器 电信
作者
Yan Xia,Nishant Ravikumar,Toni Lassila,Alejandro F. Frangi
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:87: 102814-102814 被引量:9
标识
DOI:10.1016/j.media.2023.102814
摘要

Despite success on multi-contrast MR image synthesis, generating specific modalities remains challenging. Those include Magnetic Resonance Angiography (MRA) that highlights details of vascular anatomy using specialised imaging sequences for emphasising inflow effect. This work proposes an end-to-end generative adversarial network that can synthesise anatomically plausible, high-resolution 3D MRA images using commonly acquired multi-contrast MR images (e.g. T1/T2/PD-weighted MR images) for the same subject whilst preserving the continuity of vascular anatomy. A reliable technique for MRA synthesis would unleash the research potential of very few population databases with imaging modalities (such as MRA) that enable quantitative characterisation of whole-brain vasculature. Our work is motivated by the need to generate digital twins and virtual patients of cerebrovascular anatomy for in-silico studies and/or in-silico trials. We propose a dedicated generator and discriminator that leverage the shared and complementary features of multi-source images. We design a composite loss function for emphasising vascular properties by minimising the statistical difference between the feature representations of the target images and the synthesised outputs in both 3D volumetric and 2D projection domains. Experimental results show that the proposed method can synthesise high-quality MRA images and outperform the state-of-the-art generative models both qualitatively and quantitatively. The importance assessment reveals that T2 and PD-weighted images are better predictors of MRA images than T1; and PD-weighted images contribute to better visibility of small vessel branches towards the peripheral regions. In addition, the proposed approach can generalise to unseen data acquired at different imaging centres with different scanners, whilst synthesising MRAs and vascular geometries that maintain vessel continuity. The results show the potential for use of the proposed approach to generating digital twin cohorts of cerebrovascular anatomy at scale from structural MR images typically acquired in population imaging initiatives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
0001发布了新的文献求助10
刚刚
qweqwe完成签到,获得积分10
刚刚
万能图书馆应助哈哈哈采纳,获得10
1秒前
迦鳞完成签到 ,获得积分10
1秒前
123发布了新的文献求助10
2秒前
kylucky发布了新的文献求助10
3秒前
阳光可仁发布了新的文献求助10
3秒前
3秒前
晴天完成签到,获得积分10
4秒前
4秒前
5秒前
背后的雪卉应助lameliu采纳,获得10
5秒前
6秒前
mango完成签到,获得积分10
6秒前
大模型应助Doris采纳,获得10
6秒前
杨大力发布了新的文献求助20
7秒前
yif完成签到,获得积分10
8秒前
zzzzhang_o发布了新的文献求助10
8秒前
火星上的无心完成签到,获得积分10
9秒前
9秒前
11秒前
11秒前
ZM发布了新的文献求助10
11秒前
12秒前
Jeremy完成签到,获得积分10
13秒前
13秒前
14秒前
充电宝应助liangliang采纳,获得10
14秒前
CipherSage应助liangliang采纳,获得10
14秒前
14秒前
和谐的孤丝完成签到,获得积分20
15秒前
15秒前
15秒前
15秒前
16秒前
小蘑菇应助邓玉双采纳,获得10
16秒前
miaowa完成签到,获得积分10
17秒前
18秒前
科研通AI6应助RUI采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588835
求助须知:如何正确求助?哪些是违规求助? 4671698
关于积分的说明 14789060
捐赠科研通 4626566
什么是DOI,文献DOI怎么找? 2531974
邀请新用户注册赠送积分活动 1500561
关于科研通互助平台的介绍 1468343