Automatic SAR Ship Detection Based on Multifeature Fusion Network in Spatial and Frequency Domains

计算机科学 人工智能 特征(语言学) 模式识别(心理学) 特征提取 合成孔径雷达 干扰(通信) 棱锥(几何) 目标检测 计算机视觉 频域 遥感 地质学 数学 电信 频道(广播) 哲学 语言学 几何学
作者
Shiyu Wang,Zhanchuan Cai,Jieyu Yuan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-11 被引量:15
标识
DOI:10.1109/tgrs.2023.3267495
摘要

SAR ship detection is sensitive to the interference of inshore background, disturbance of strong wind and waves. The similar textures of the neighbor objects in SAR images affect the detection performance. As a remarkable indicator, textural information in the frequency domain characterizes the subtle textural differences between an object and its surroundings. Inspired by this, a multi-feature fusion network (MFFN) for SAR ship detection is constructed in this paper, which can obtain contour and detail information of a SAR image for detecting ships from their background. Firstly, spatial and frequency information of ship targets, which characterizes the whole and subtle textural information of ship targets, are extracted by a double-backbone network with Haar wavelet transform. Afterward, a binary domain feature pyramid network (BDFPN) with feature fusion block (FFB) is applied to fuse the spatial, frequency textural information of ship targets to obtain the fused feature maps with a top-down structure. Finally, those feature maps are adopted through the region proposal network for detecting ship targets from original images. The experimental results show that the proposed method achieves greater performance and more accurate detection results in unique situations in the state-of-the-art SAR ship detection data set (SSDD).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张泽轩发布了新的文献求助10
刚刚
咔咔完成签到,获得积分10
1秒前
1秒前
石头完成签到,获得积分10
4秒前
5秒前
lyon完成签到,获得积分10
5秒前
1111应助jinyu采纳,获得10
5秒前
qin完成签到,获得积分10
5秒前
Elva完成签到,获得积分10
5秒前
pp‘s发布了新的文献求助10
5秒前
6秒前
6秒前
Amry完成签到,获得积分10
7秒前
7秒前
tom81882发布了新的文献求助50
8秒前
zz完成签到,获得积分20
8秒前
8秒前
8秒前
程老板完成签到,获得积分10
8秒前
9秒前
10秒前
凡fan发布了新的文献求助10
10秒前
搜集达人应助A2QD采纳,获得10
11秒前
11秒前
啦啦啦发布了新的文献求助10
11秒前
大力的代荷完成签到,获得积分10
11秒前
12秒前
qin发布了新的文献求助10
12秒前
hd发布了新的文献求助10
12秒前
彭于晏应助阿承采纳,获得10
12秒前
zz发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助50
13秒前
科研通AI5应助CC采纳,获得10
13秒前
Kz发布了新的文献求助10
13秒前
guohui完成签到,获得积分10
13秒前
上官若男应助娟娟采纳,获得10
14秒前
大个应助Truman采纳,获得10
15秒前
16秒前
苗条巧曼发布了新的文献求助10
16秒前
lei完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5074953
求助须知:如何正确求助?哪些是违规求助? 4294878
关于积分的说明 13382686
捐赠科研通 4116573
什么是DOI,文献DOI怎么找? 2254349
邀请新用户注册赠送积分活动 1258893
关于科研通互助平台的介绍 1191820