导纳
机器人
弹道
人机交互
平滑度
运动控制
计算机科学
控制理论(社会学)
运动(物理)
机器人控制
工程类
模拟
人工智能
计算机视觉
控制(管理)
移动机器人
数学
物理
电阻抗
数学分析
天文
电气工程
作者
Chengyun Wang,Jingjin Zhao
出处
期刊:Robotica
[Cambridge University Press]
日期:2023-04-11
卷期号:41 (7): 2155-2176
被引量:2
标识
DOI:10.1017/s0263574723000383
摘要
Abstract Admittance control of the robot is an important method to improve human–robot collaborative performance. However, it displays poor matching between admittance parameters and human–robot collaborative motion. This results in poor motion performance when the robot interacts with the changeable environment (human). Therefore, to improve the performance of human–robot collaboration, the human-like variable admittance parameter regulator (HVAPR) based on the change rate of interaction force is proposed by studying the human arm’s static and dynamic admittance parameters in human–human collaborative motion. HVAPR can generate admittance parameters matching with human collaborative motion. To test the performance of the proposed HVAPR, the human–robot collaborative motion experiment based on HVAPR is designed and compared with the variable admittance parameter regulator (VAPR). The satisfaction, recognition ratio, and recognition confidence of the two admittance parameter regulators are statistically analyzed via questionnaire. Simultaneously, the trajectory and interaction force of the robot are analyzed, and the performance of the human–robot collaborative motion is assessed and compared using the trajectory smoothness index and average energy index. The results show that HVAPR is superior to VAPR in human–robot collaborative satisfaction, robot trajectory smoothness, and average energy consumption.
科研通智能强力驱动
Strongly Powered by AbleSci AI