Spatial or Random Cross-Validation? The Effect of Resampling Methods in Predicting Groundwater Salinity with Machine Learning in Mediterranean Region

重采样 过度拟合 随机森林 空间分析 交叉验证 计算机科学 数据挖掘 人工智能 环境科学 机器学习 统计 数学 人工神经网络
作者
Panagiotis Tziachris,Melpomeni Nikou,Vassilis Aschonitis,Andreas Kallioras,Katerina Sachsamanoglou,María Dolores Fidelibus,Evangelos Tziritis
出处
期刊:Water [Multidisciplinary Digital Publishing Institute]
卷期号:15 (12): 2278-2278 被引量:5
标识
DOI:10.3390/w15122278
摘要

Machine learning (ML) algorithms are extensively used with outstanding prediction accuracy. However, in some cases, their overfitting capabilities, along with inadvertent biases, might produce overly optimistic results. Spatial data are a special kind of data that could introduce biases to ML due to their intrinsic spatial autocorrelation. To address this issue, a special resampling method has emerged called spatial cross-validation (SCV). The purpose of this study was to evaluate the performance of SCV compared with conventional random cross-validation (CCV) used in most ML studies. Multiple ML models were created with CCV and SCV to predict groundwater electrical conductivity (EC) with data (A) from Rhodope, Greece, in the summer of 2020; (B) from the same area but at a different time (summer 2019); and (C) from a new area (the Salento peninsula, Italy). The results showed that the SCV provides ML models with superior generalization capabilities and, hence, better prediction results in new unknown data. The SCV seems to be able to capture the spatial patterns in the data while also reducing the over-optimism bias that is often associated with CCV methods. Based on the results, SCV could be applied with ML in studies that use spatial data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢呼的飞荷完成签到 ,获得积分10
刚刚
1秒前
crazy发布了新的文献求助10
4秒前
taowang发布了新的文献求助10
6秒前
6秒前
苏苏完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
惠小之完成签到,获得积分10
11秒前
菠萝贺贺发布了新的文献求助10
12秒前
隐形曼青应助卜凡采纳,获得10
12秒前
yadi发布了新的文献求助10
13秒前
PhDshi发布了新的文献求助10
13秒前
crazy完成签到,获得积分10
13秒前
请叫我风吹麦浪完成签到,获得积分0
13秒前
YY发布了新的文献求助10
14秒前
Xxsy发布了新的文献求助20
14秒前
舒服的牛排完成签到,获得积分10
15秒前
斯文败类应助suo采纳,获得10
15秒前
沙福林完成签到,获得积分10
15秒前
独特的秋应助taowang采纳,获得30
16秒前
疯狂的寻绿完成签到,获得积分10
18秒前
19秒前
19秒前
活力翠霜完成签到,获得积分10
19秒前
20秒前
20秒前
22秒前
科研通AI2S应助crazy采纳,获得10
23秒前
24秒前
可爱的函函应助dragon采纳,获得10
24秒前
卜凡发布了新的文献求助10
25秒前
王大纯发布了新的文献求助10
25秒前
25秒前
所所应助科研通管家采纳,获得10
25秒前
SciGPT应助科研通管家采纳,获得10
25秒前
完美世界应助科研通管家采纳,获得10
25秒前
共享精神应助科研通管家采纳,获得10
25秒前
赘婿应助科研通管家采纳,获得10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991794
求助须知:如何正确求助?哪些是违规求助? 3532981
关于积分的说明 11260197
捐赠科研通 3272241
什么是DOI,文献DOI怎么找? 1805664
邀请新用户注册赠送积分活动 882609
科研通“疑难数据库(出版商)”最低求助积分说明 809405