Spatial or Random Cross-Validation? The Effect of Resampling Methods in Predicting Groundwater Salinity with Machine Learning in Mediterranean Region

重采样 过度拟合 随机森林 空间分析 交叉验证 计算机科学 数据挖掘 人工智能 环境科学 机器学习 统计 数学 人工神经网络
作者
Panagiotis Tziachris,Melpomeni Nikou,Vassilis Aschonitis,Andreas Kallioras,Katerina Sachsamanoglou,María Dolores Fidelibus,Evangelos Tziritis
出处
期刊:Water [MDPI AG]
卷期号:15 (12): 2278-2278 被引量:5
标识
DOI:10.3390/w15122278
摘要

Machine learning (ML) algorithms are extensively used with outstanding prediction accuracy. However, in some cases, their overfitting capabilities, along with inadvertent biases, might produce overly optimistic results. Spatial data are a special kind of data that could introduce biases to ML due to their intrinsic spatial autocorrelation. To address this issue, a special resampling method has emerged called spatial cross-validation (SCV). The purpose of this study was to evaluate the performance of SCV compared with conventional random cross-validation (CCV) used in most ML studies. Multiple ML models were created with CCV and SCV to predict groundwater electrical conductivity (EC) with data (A) from Rhodope, Greece, in the summer of 2020; (B) from the same area but at a different time (summer 2019); and (C) from a new area (the Salento peninsula, Italy). The results showed that the SCV provides ML models with superior generalization capabilities and, hence, better prediction results in new unknown data. The SCV seems to be able to capture the spatial patterns in the data while also reducing the over-optimism bias that is often associated with CCV methods. Based on the results, SCV could be applied with ML in studies that use spatial data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凝子老师发布了新的文献求助10
2秒前
明亮的宁发布了新的文献求助10
2秒前
华仔应助Jian采纳,获得20
3秒前
P4发布了新的文献求助100
4秒前
chrisyan发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
李爱国应助ii采纳,获得10
7秒前
dazzle完成签到,获得积分10
8秒前
刘迪完成签到,获得积分20
10秒前
迅速冰岚发布了新的文献求助10
10秒前
11秒前
火星上火龙果完成签到,获得积分10
13秒前
刘迪发布了新的文献求助10
16秒前
16秒前
17秒前
科研通AI5应助adfadf采纳,获得10
18秒前
肖淑美完成签到 ,获得积分10
19秒前
比蓝色更深完成签到,获得积分10
19秒前
材化小将军完成签到,获得积分10
19秒前
田様应助科研通管家采纳,获得50
20秒前
Leon应助科研通管家采纳,获得30
20秒前
华仔应助科研通管家采纳,获得10
20秒前
orixero应助科研通管家采纳,获得10
20秒前
小马甲应助科研通管家采纳,获得10
20秒前
英姑应助科研通管家采纳,获得30
20秒前
kk完成签到,获得积分10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
Akim应助科研通管家采纳,获得10
20秒前
田様应助科研通管家采纳,获得10
20秒前
CodeCraft应助科研通管家采纳,获得10
20秒前
香蕉觅云应助科研通管家采纳,获得10
20秒前
20秒前
sutharsons应助科研通管家采纳,获得30
20秒前
星河完成签到,获得积分10
23秒前
SDNUDRUG完成签到,获得积分10
23秒前
Rex完成签到,获得积分20
23秒前
LU41完成签到,获得积分10
23秒前
okbasf完成签到,获得积分10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851