亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Spatial or Random Cross-Validation? The Effect of Resampling Methods in Predicting Groundwater Salinity with Machine Learning in Mediterranean Region

重采样 过度拟合 随机森林 空间分析 交叉验证 计算机科学 数据挖掘 人工智能 环境科学 机器学习 统计 数学 人工神经网络
作者
Panagiotis Tziachris,Melpomeni Nikou,Vassilis Aschonitis,Andreas Kallioras,Katerina Sachsamanoglou,María Dolores Fidelibus,Evangelos Tziritis
出处
期刊:Water [MDPI AG]
卷期号:15 (12): 2278-2278 被引量:5
标识
DOI:10.3390/w15122278
摘要

Machine learning (ML) algorithms are extensively used with outstanding prediction accuracy. However, in some cases, their overfitting capabilities, along with inadvertent biases, might produce overly optimistic results. Spatial data are a special kind of data that could introduce biases to ML due to their intrinsic spatial autocorrelation. To address this issue, a special resampling method has emerged called spatial cross-validation (SCV). The purpose of this study was to evaluate the performance of SCV compared with conventional random cross-validation (CCV) used in most ML studies. Multiple ML models were created with CCV and SCV to predict groundwater electrical conductivity (EC) with data (A) from Rhodope, Greece, in the summer of 2020; (B) from the same area but at a different time (summer 2019); and (C) from a new area (the Salento peninsula, Italy). The results showed that the SCV provides ML models with superior generalization capabilities and, hence, better prediction results in new unknown data. The SCV seems to be able to capture the spatial patterns in the data while also reducing the over-optimism bias that is often associated with CCV methods. Based on the results, SCV could be applied with ML in studies that use spatial data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
32秒前
欣喜秋天发布了新的文献求助10
37秒前
42秒前
123123发布了新的文献求助10
49秒前
55秒前
123123完成签到,获得积分10
59秒前
zzzzz发布了新的文献求助10
1分钟前
1分钟前
英俊的铭应助欣喜秋天采纳,获得10
1分钟前
1分钟前
CHX发布了新的文献求助10
1分钟前
欣喜秋天完成签到,获得积分10
1分钟前
ls完成签到,获得积分10
1分钟前
1分钟前
WYDNBDX2013发布了新的文献求助10
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Ava应助WYDNBDX2013采纳,获得10
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
TwentyNine完成签到,获得积分10
2分钟前
mono发布了新的文献求助30
2分钟前
2分钟前
mono完成签到,获得积分10
2分钟前
MOMO发布了新的文献求助10
2分钟前
阔达的沛文完成签到,获得积分10
2分钟前
2分钟前
2分钟前
biebie发布了新的文献求助20
2分钟前
完美世界应助榴莲柿子茶采纳,获得10
2分钟前
2分钟前
pin完成签到,获得积分10
2分钟前
pin发布了新的文献求助10
2分钟前
2分钟前
Zhangfu完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5459225
求助须知:如何正确求助?哪些是违规求助? 4564934
关于积分的说明 14297314
捐赠科研通 4490026
什么是DOI,文献DOI怎么找? 2459507
邀请新用户注册赠送积分活动 1449159
关于科研通互助平台的介绍 1424647