Spatial or Random Cross-Validation? The Effect of Resampling Methods in Predicting Groundwater Salinity with Machine Learning in Mediterranean Region

重采样 过度拟合 随机森林 空间分析 交叉验证 计算机科学 数据挖掘 人工智能 环境科学 机器学习 统计 数学 人工神经网络
作者
Panagiotis Tziachris,Melpomeni Nikou,Vassilis Aschonitis,Andreas Kallioras,Katerina Sachsamanoglou,María Dolores Fidelibus,Evangelos Tziritis
出处
期刊:Water [MDPI AG]
卷期号:15 (12): 2278-2278 被引量:5
标识
DOI:10.3390/w15122278
摘要

Machine learning (ML) algorithms are extensively used with outstanding prediction accuracy. However, in some cases, their overfitting capabilities, along with inadvertent biases, might produce overly optimistic results. Spatial data are a special kind of data that could introduce biases to ML due to their intrinsic spatial autocorrelation. To address this issue, a special resampling method has emerged called spatial cross-validation (SCV). The purpose of this study was to evaluate the performance of SCV compared with conventional random cross-validation (CCV) used in most ML studies. Multiple ML models were created with CCV and SCV to predict groundwater electrical conductivity (EC) with data (A) from Rhodope, Greece, in the summer of 2020; (B) from the same area but at a different time (summer 2019); and (C) from a new area (the Salento peninsula, Italy). The results showed that the SCV provides ML models with superior generalization capabilities and, hence, better prediction results in new unknown data. The SCV seems to be able to capture the spatial patterns in the data while also reducing the over-optimism bias that is often associated with CCV methods. Based on the results, SCV could be applied with ML in studies that use spatial data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
ladysansan完成签到,获得积分10
刚刚
积极行天发布了新的文献求助10
1秒前
1秒前
闪闪青雪完成签到,获得积分10
3秒前
Ming完成签到,获得积分10
5秒前
WJ完成签到,获得积分10
5秒前
谦让的傲芙完成签到,获得积分10
5秒前
zzk完成签到,获得积分10
6秒前
jzm完成签到,获得积分10
8秒前
卜哥完成签到 ,获得积分10
10秒前
14秒前
大胆菲音发布了新的文献求助30
15秒前
吴宵完成签到,获得积分10
15秒前
15秒前
浮游应助舞星辰采纳,获得10
16秒前
ceeray23应助单纯的迎夏采纳,获得10
16秒前
16秒前
星辰大海应助Shenqm采纳,获得10
17秒前
ler0100完成签到,获得积分10
17秒前
赘婿应助柚子苗采纳,获得10
17秒前
杰老爷完成签到,获得积分10
18秒前
思源应助venihall采纳,获得30
18秒前
19秒前
寰宇完成签到,获得积分10
19秒前
充电宝应助瞬间de回眸采纳,获得10
20秒前
haifeng发布了新的文献求助10
20秒前
明亮的老四完成签到 ,获得积分10
20秒前
21秒前
医学生的小宝库完成签到,获得积分20
21秒前
xialuoke发布了新的文献求助10
22秒前
花痴的香菇完成签到,获得积分10
22秒前
22秒前
LuoJiajun完成签到,获得积分10
23秒前
玉鱼儿完成签到 ,获得积分10
24秒前
24秒前
24秒前
水梦语完成签到,获得积分10
25秒前
三杠完成签到 ,获得积分10
25秒前
666发布了新的文献求助10
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498797
求助须知:如何正确求助?哪些是违规求助? 4595937
关于积分的说明 14450753
捐赠科研通 4528891
什么是DOI,文献DOI怎么找? 2481758
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438653