Spatial or Random Cross-Validation? The Effect of Resampling Methods in Predicting Groundwater Salinity with Machine Learning in Mediterranean Region

重采样 过度拟合 随机森林 空间分析 交叉验证 计算机科学 数据挖掘 人工智能 环境科学 机器学习 统计 数学 人工神经网络
作者
Panagiotis Tziachris,Melpomeni Nikou,Vassilis Aschonitis,Andreas Kallioras,Katerina Sachsamanoglou,María Dolores Fidelibus,Evangelos Tziritis
出处
期刊:Water [MDPI AG]
卷期号:15 (12): 2278-2278 被引量:5
标识
DOI:10.3390/w15122278
摘要

Machine learning (ML) algorithms are extensively used with outstanding prediction accuracy. However, in some cases, their overfitting capabilities, along with inadvertent biases, might produce overly optimistic results. Spatial data are a special kind of data that could introduce biases to ML due to their intrinsic spatial autocorrelation. To address this issue, a special resampling method has emerged called spatial cross-validation (SCV). The purpose of this study was to evaluate the performance of SCV compared with conventional random cross-validation (CCV) used in most ML studies. Multiple ML models were created with CCV and SCV to predict groundwater electrical conductivity (EC) with data (A) from Rhodope, Greece, in the summer of 2020; (B) from the same area but at a different time (summer 2019); and (C) from a new area (the Salento peninsula, Italy). The results showed that the SCV provides ML models with superior generalization capabilities and, hence, better prediction results in new unknown data. The SCV seems to be able to capture the spatial patterns in the data while also reducing the over-optimism bias that is often associated with CCV methods. Based on the results, SCV could be applied with ML in studies that use spatial data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
华仔应助金蕊采纳,获得10
刚刚
kittykitten完成签到 ,获得积分10
1秒前
xing1995完成签到,获得积分20
2秒前
3秒前
研友_VZG7GZ应助萧水白采纳,获得100
6秒前
研学完成签到,获得积分10
6秒前
xing1995发布了新的文献求助10
6秒前
NexusExplorer应助搞怪的人龙采纳,获得10
6秒前
7秒前
111完成签到 ,获得积分10
7秒前
zyh发布了新的文献求助10
8秒前
歪歪象完成签到,获得积分10
12秒前
超级冰薇发布了新的文献求助10
12秒前
清秀的帽子完成签到,获得积分10
13秒前
研学发布了新的文献求助10
13秒前
14秒前
羊咩咩哒完成签到,获得积分10
14秒前
15秒前
16秒前
cjjwei完成签到 ,获得积分10
16秒前
NexusExplorer应助狗十七采纳,获得10
17秒前
18秒前
Jasper应助任ren采纳,获得10
18秒前
海豚音521033完成签到,获得积分10
18秒前
Winner完成签到,获得积分10
18秒前
18秒前
Ava应助我有一只猫采纳,获得10
21秒前
Forest发布了新的文献求助10
21秒前
22秒前
菇小小完成签到 ,获得积分10
22秒前
董菲音完成签到,获得积分10
23秒前
23秒前
研友_ng9Yj8发布了新的文献求助10
25秒前
25秒前
bian完成签到 ,获得积分10
26秒前
SpursGo发布了新的文献求助10
27秒前
互助遵法尚德应助研学采纳,获得10
27秒前
lalala发布了新的文献求助10
28秒前
28秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147946
求助须知:如何正确求助?哪些是违规求助? 2798939
关于积分的说明 7832669
捐赠科研通 2456017
什么是DOI,文献DOI怎么找? 1307045
科研通“疑难数据库(出版商)”最低求助积分说明 628043
版权声明 601620