Spatial or Random Cross-Validation? The Effect of Resampling Methods in Predicting Groundwater Salinity with Machine Learning in Mediterranean Region

重采样 过度拟合 随机森林 空间分析 交叉验证 计算机科学 数据挖掘 人工智能 环境科学 机器学习 统计 数学 人工神经网络
作者
Panagiotis Tziachris,Melpomeni Nikou,Vassilis Aschonitis,Andreas Kallioras,Katerina Sachsamanoglou,María Dolores Fidelibus,Evangelos Tziritis
出处
期刊:Water [MDPI AG]
卷期号:15 (12): 2278-2278 被引量:5
标识
DOI:10.3390/w15122278
摘要

Machine learning (ML) algorithms are extensively used with outstanding prediction accuracy. However, in some cases, their overfitting capabilities, along with inadvertent biases, might produce overly optimistic results. Spatial data are a special kind of data that could introduce biases to ML due to their intrinsic spatial autocorrelation. To address this issue, a special resampling method has emerged called spatial cross-validation (SCV). The purpose of this study was to evaluate the performance of SCV compared with conventional random cross-validation (CCV) used in most ML studies. Multiple ML models were created with CCV and SCV to predict groundwater electrical conductivity (EC) with data (A) from Rhodope, Greece, in the summer of 2020; (B) from the same area but at a different time (summer 2019); and (C) from a new area (the Salento peninsula, Italy). The results showed that the SCV provides ML models with superior generalization capabilities and, hence, better prediction results in new unknown data. The SCV seems to be able to capture the spatial patterns in the data while also reducing the over-optimism bias that is often associated with CCV methods. Based on the results, SCV could be applied with ML in studies that use spatial data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
帅气的伯云完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
2秒前
orixero应助要减肥的天空采纳,获得10
2秒前
小宇哥LB发布了新的文献求助10
2秒前
yjjin发布了新的文献求助20
2秒前
慕青应助细心的念薇采纳,获得10
3秒前
3秒前
英俊的铭应助fjaa采纳,获得30
3秒前
4秒前
糊涂的天晴完成签到,获得积分20
4秒前
6秒前
6秒前
zh5841314525发布了新的文献求助10
6秒前
6秒前
格格磊磊完成签到,获得积分10
6秒前
cubicT发布了新的文献求助10
7秒前
简单秋完成签到,获得积分10
7秒前
小二郎应助无敌DE心采纳,获得10
7秒前
8秒前
8秒前
dddsssaaa发布了新的文献求助10
9秒前
琪琪乖不吃辣完成签到,获得积分10
9秒前
伯赏松思完成签到,获得积分10
9秒前
10秒前
10秒前
土豆你个西红柿完成签到 ,获得积分10
10秒前
杨濮帆完成签到,获得积分20
10秒前
酷奔完成签到 ,获得积分10
11秒前
天真笑白完成签到 ,获得积分10
11秒前
12秒前
小白完成签到,获得积分20
12秒前
Davidfly20发布了新的文献求助10
12秒前
华仔应助Zoro采纳,获得10
12秒前
小宇哥LB完成签到,获得积分10
13秒前
YuanCheng发布了新的文献求助10
13秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5586181
求助须知:如何正确求助?哪些是违规求助? 4669508
关于积分的说明 14778493
捐赠科研通 4618944
什么是DOI,文献DOI怎么找? 2530786
邀请新用户注册赠送积分活动 1499538
关于科研通互助平台的介绍 1467782