亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting five-year mortality in soft-tissue sarcoma patients

医学 逻辑回归 后备箱 流行病学 癌症 软组织肉瘤 阶段(地层学) 肉瘤 内科学 外科 软组织 病理 生态学 生物 古生物学
作者
Teja Yeramosu,Waleed Ahmad,Azhar Bashir,Jacob Wait,James Bassett,Gregory F. Domson
出处
期刊:The bone & joint journal [British Editorial Society of Bone and Joint Surgery]
卷期号:105-B (6): 702-710 被引量:4
标识
DOI:10.1302/0301-620x.105b6.bjj-2022-0998.r1
摘要

The aim of this study was to identify factors associated with five-year cancer-related mortality in patients with limb and trunk soft-tissue sarcoma (STS) and develop and validate machine learning algorithms in order to predict five-year cancer-related mortality in these patients.Demographic, clinicopathological, and treatment variables of limb and trunk STS patients in the Surveillance, Epidemiology, and End Results Program (SEER) database from 2004 to 2017 were analyzed. Multivariable logistic regression was used to determine factors significantly associated with five-year cancer-related mortality. Various machine learning models were developed and compared using area under the curve (AUC), calibration, and decision curve analysis. The model that performed best on the SEER testing data was further assessed to determine the variables most important in its predictive capacity. This model was externally validated using our institutional dataset.A total of 13,646 patients with STS from the SEER database were included, of whom 35.9% experienced five-year cancer-related mortality. The random forest model performed the best overall and identified tumour size as the most important variable when predicting mortality in patients with STS, followed by M stage, histological subtype, age, and surgical excision. Each variable was significant in logistic regression. External validation yielded an AUC of 0.752.This study identified clinically important variables associated with five-year cancer-related mortality in patients with limb and trunk STS, and developed a predictive model that demonstrated good accuracy and predictability. Orthopaedic oncologists may use these findings to further risk-stratify their patients and recommend an optimal course of treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
Xxynysmhxs完成签到 ,获得积分10
12秒前
qks完成签到 ,获得积分10
16秒前
在水一方应助tarrsy采纳,获得30
18秒前
赘婿应助will采纳,获得10
22秒前
999完成签到,获得积分10
24秒前
32秒前
37秒前
更深的蓝发布了新的文献求助10
38秒前
luqong完成签到,获得积分10
41秒前
天天好心覃完成签到 ,获得积分10
42秒前
小灰灰完成签到 ,获得积分10
43秒前
48秒前
熊一只发布了新的文献求助10
52秒前
温暖砖头完成签到,获得积分10
54秒前
56秒前
will完成签到,获得积分10
56秒前
56秒前
温暖砖头发布了新的文献求助10
58秒前
鲜于元龙发布了新的文献求助10
1分钟前
will发布了新的文献求助10
1分钟前
青羽凌雪应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
重生之我怎么变院士了完成签到 ,获得积分10
1分钟前
黄沙漠完成签到 ,获得积分10
1分钟前
DrLee完成签到,获得积分10
1分钟前
一顿要吃七碗半完成签到,获得积分10
1分钟前
卡琳完成签到 ,获得积分10
1分钟前
lyy完成签到 ,获得积分10
1分钟前
ding应助鲜于元龙采纳,获得10
1分钟前
完美世界应助花笙米采纳,获得10
1分钟前
小袁冲冲冲完成签到,获得积分10
1分钟前
1分钟前
2分钟前
追三完成签到 ,获得积分10
2分钟前
鲜于元龙发布了新的文献求助10
2分钟前
梁liang完成签到,获得积分10
2分钟前
2分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307266
求助须知:如何正确求助?哪些是违规求助? 2940978
关于积分的说明 8500041
捐赠科研通 2615243
什么是DOI,文献DOI怎么找? 1428784
科研通“疑难数据库(出版商)”最低求助积分说明 663542
邀请新用户注册赠送积分活动 648382