Predicting five-year mortality in soft-tissue sarcoma patients

医学 逻辑回归 后备箱 流行病学 癌症 软组织肉瘤 阶段(地层学) 肉瘤 内科学 外科 软组织 病理 生态学 生物 古生物学
作者
Teja Yeramosu,Waleed Ahmad,Azhar Bashir,Jacob Wait,James Bassett,Gregory F. Domson
出处
期刊:The bone & joint journal [British Editorial Society of Bone and Joint Surgery]
卷期号:105-B (6): 702-710 被引量:4
标识
DOI:10.1302/0301-620x.105b6.bjj-2022-0998.r1
摘要

The aim of this study was to identify factors associated with five-year cancer-related mortality in patients with limb and trunk soft-tissue sarcoma (STS) and develop and validate machine learning algorithms in order to predict five-year cancer-related mortality in these patients.Demographic, clinicopathological, and treatment variables of limb and trunk STS patients in the Surveillance, Epidemiology, and End Results Program (SEER) database from 2004 to 2017 were analyzed. Multivariable logistic regression was used to determine factors significantly associated with five-year cancer-related mortality. Various machine learning models were developed and compared using area under the curve (AUC), calibration, and decision curve analysis. The model that performed best on the SEER testing data was further assessed to determine the variables most important in its predictive capacity. This model was externally validated using our institutional dataset.A total of 13,646 patients with STS from the SEER database were included, of whom 35.9% experienced five-year cancer-related mortality. The random forest model performed the best overall and identified tumour size as the most important variable when predicting mortality in patients with STS, followed by M stage, histological subtype, age, and surgical excision. Each variable was significant in logistic regression. External validation yielded an AUC of 0.752.This study identified clinically important variables associated with five-year cancer-related mortality in patients with limb and trunk STS, and developed a predictive model that demonstrated good accuracy and predictability. Orthopaedic oncologists may use these findings to further risk-stratify their patients and recommend an optimal course of treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
石幻枫完成签到 ,获得积分10
刚刚
生动盼秋发布了新的文献求助10
刚刚
韭黄发布了新的文献求助10
刚刚
Eliauk完成签到,获得积分10
1秒前
小野狼完成签到,获得积分10
1秒前
威武诺言完成签到,获得积分10
1秒前
fengye发布了新的文献求助10
1秒前
李东东完成签到 ,获得积分10
1秒前
Zn应助hulin_zjxu采纳,获得10
1秒前
海鸥海鸥发布了新的文献求助50
2秒前
小乔要努力变强完成签到,获得积分10
2秒前
YANG完成签到 ,获得积分10
2秒前
2秒前
在水一方应助马保国123采纳,获得10
2秒前
Jovid完成签到,获得积分10
3秒前
建成完成签到,获得积分10
3秒前
爆米花应助落落采纳,获得10
3秒前
852应助liu123479采纳,获得20
4秒前
4秒前
无情念之发布了新的文献求助10
4秒前
lilac应助Rocky采纳,获得10
4秒前
4秒前
深情安青应助OYE采纳,获得10
5秒前
5秒前
李爱国应助热情的阿猫桑采纳,获得10
5秒前
5秒前
5秒前
花花完成签到,获得积分10
6秒前
无花果应助韭黄采纳,获得10
6秒前
啦某某发布了新的文献求助20
7秒前
cc发布了新的文献求助30
7秒前
9秒前
一颗苹果完成签到,获得积分10
9秒前
故意的傲玉应助小月采纳,获得10
10秒前
nicemice发布了新的文献求助10
10秒前
xtlx完成签到,获得积分10
10秒前
蓝桉完成签到,获得积分10
11秒前
执着的怜寒应助aaaabc采纳,获得20
11秒前
11秒前
花花发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759