自噬
安普克
PI3K/AKT/mTOR通路
ATG5型
细胞生物学
肝损伤
ULK1
雷帕霉素的作用靶点
化学
蛋白激酶A
生物
信号转导
药理学
磷酸化
生物化学
细胞凋亡
作者
Yue Xu,Shangwen Wang,Chi‐Kwan Leung,Hao Chen,Chan Wang,Huijie Zhang,Shuwei Zhang,Yi Tan,Haowei Wang,Lin Miao,Yi Li,Yizhen Huang,Xiaoxing Zhang,Genmeng Yang,Ruilin Zhang,Xiaofeng Zeng
标识
DOI:10.1016/j.toxlet.2023.06.004
摘要
Amanitin poisoning is one of the most life-threatening mushroom poisonings. α-Amanitin plays a key role in Amanita phalloides intoxication. α-Amanitin shows toxic effects on the liver. However, the mechanism by which α-amanitin induces liver injury has not been elucidated. Autophagy plays a crucial role in maintaining cellular homeostasis and is closely related to the occurrence of a variety of diseases. Studies have shown that autophagy may play an important role in the process of α-amanitin-induced liver injury. However, the mechanism of α-amanitin-induced autophagy remains unclear. Thus, this study aimed to explore the mechanisms of α-amanitin in inducing hepatotoxicity in Sprague Dawley (SD) rats and the normal human liver cell line L02 cells. The SD rats and L02 cells exposed to α-amanitin were observed to determine whether α-amanitin could induce the autophagy of rat liver and L02 cells. The regulatory relationship between autophagy and the AMPK-mTOR-ULK pathway by exposing the autophagy agonist (rapamycin (RAPA)), autophagy inhibitor (3-methylademine (3-MA)), and AMPK inhibitor (compound C) was also explored. Autophagy-related proteins and AMPK-mTOR-ULK pathway-related proteins were detected using Western blot. The results of the study indicated that exposure to different concentrations of α-amanitin led to morphological changes in liver cells and significantly elevated levels of ALT and AST in the serum of SD rats. Additionally, the expression levels of LC3-II, Beclin-1, ATG5, ATG7, AMPK, p-AMPK, mTOR, p-mTOR, and ULK1 were significantly increased in the rat liver. And we found that L02 cells exposed to 0.5 μM α-amanitin for 6 h significantly induced autophagy and activated the AMPK-mTOR-ULK1 pathway. Pretreated with RAPA, 3-MA, and compound C for 1 h, the expression levels of autophagy-related proteins and AMPK-mTOR-ULK pathway-related proteins significantly changed. Our results indicates that autophagy and the AMPK-mTOR-ULK pathway are involved in the process of α-amanitin-induced liver injury. This study may foster the identification of actionable therapeutic targets for A. phalloides intoxication.
科研通智能强力驱动
Strongly Powered by AbleSci AI