肌层
子宫
子宫收缩
磁共振成像
解剖
妊娠期
怀孕
医学
生物
内科学
放射科
遗传学
作者
Hui Wang,Zichao Wen,Wenjie Wu,Zhexian Sun,Qing Wang,Alan L. Schwartz,Phillip S. Cuculich,Alison G. Cahill,George A. Macones,Yong Wang
摘要
During normal pregnancy, the uterine smooth muscle, the myometrium, begins to have weak, uncoordinated contractions at late gestation to help the cervix remodel. In labor, the myometrium has strong, coordinated contractions to deliver the fetus. Various methods have been developed to monitor uterine contraction patterns to predict labor onset. However, the current techniques have limited spatial coverage and specificity. We developed electromyometrial imaging (EMMI) to noninvasively map uterine electrical activity onto the three-dimensional uterine surface during contractions. The first step in EMMI is to use T1-weighted magnetic resonance imaging to acquire the subject-specific body-uterus geometry. Next, up to 192 pin-type electrodes placed on the body surface are used to collect electrical recordings from the myometrium. Finally, the EMMI data processing pipeline is performed to combine the body-uterus geometry with body surface electrical data to reconstruct and image uterine electrical activities on the uterine surface. EMMI can safely and noninvasively image, identify, and measure early activation regions and propagation patterns across the entire uterus in three dimensions.
科研通智能强力驱动
Strongly Powered by AbleSci AI