Magnetic MnFe2O4 nanoparticles anchored on sludge-derived biochar in activating peroxydisulfate for levofloxacin degradation: Mechanism, degradation pathways and cost analysis

过氧二硫酸盐 催化作用 生物炭 降级(电信) 线性扫描伏安法 X射线光电子能谱 化学 热解 核化学 化学工程 无机化学 材料科学 电化学 循环伏安法 有机化学 电信 电极 物理化学 计算机科学 工程类
作者
Xiaoyan Meng,Tingting Song,Chao Zhang,Huayu Wang,Ming Ge,Changsheng Guo
出处
期刊:Journal of environmental chemical engineering [Elsevier]
卷期号:11 (3): 110241-110241 被引量:28
标识
DOI:10.1016/j.jece.2023.110241
摘要

The sludge-derived biochar (SBC) was prepared by a low-cost microwave pyrolysis process, and then MnFe2O4 nanoparticles were anchored onto the surface of SBC through a hydrothermal route to construct a magnetic MnFe2O4/SBC composite catalyst. As-obtained MnFe2O4/SBC catalysts were characterized by XRD, FT-IR, Raman, FE-SEM, BET surface area and XPS. The optimized MnFe2O4/SBC(1:3) catalyst showed a higher catalytic activity to activate peroxydisulfate (PDS) for levofloxacin (LVF) degradation than that of SBC, MnFe2O4 and reported magnetic composite catalysts. After 80 min of reaction, 79.5% of LVF in water (10 mg/L) was degraded by MnFe2O4/SBC(1:3) in the presence of PDS (1.5 g/L), and LVF degradation followed the pseudo-second-order kinetics. Calcium carbonate (CaCO3) in SBC participates in PDS activation. XPS analysis, oxidative species capture experiments, EPR and linear sweep voltammetry (LSV) tests confirmed that LVF degradation in MnFe2O4/SBC-PDS oxidation system was achieved through the non-radical (electron transfer, 1O2) and radical (SO4•−, ∙OH and O2•−) pathways, with the former playing a dominant role. The degradation routes of LVF were established based on the degradation intermediates. LVF removal efficiency from real water matrices was improved by means of increasing catalyst dosage and reaction temperature. Cost analysis indicates that MnFe2O4/SBC-PDS oxidation process is a cost-effective method to eliminate the antibiotics in water.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
oO完成签到 ,获得积分10
1秒前
2秒前
细心的语蓉完成签到,获得积分10
2秒前
腼腆的半莲完成签到,获得积分10
2秒前
3秒前
yazhi发布了新的文献求助10
3秒前
hhhhh完成签到 ,获得积分10
3秒前
3秒前
研友_LJGoXn完成签到,获得积分0
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
ZYY发布了新的文献求助20
5秒前
jing完成签到,获得积分10
6秒前
郑洋发布了新的文献求助30
6秒前
王靖雯完成签到,获得积分10
7秒前
7秒前
顶顶顶发布了新的文献求助10
7秒前
7秒前
上官若男应助小媛采纳,获得10
8秒前
科研通AI2S应助Swin采纳,获得10
8秒前
元气马发布了新的文献求助10
8秒前
英姑应助稳重的秋天采纳,获得10
9秒前
DYL完成签到,获得积分10
9秒前
orixero应助细心的语蓉采纳,获得10
9秒前
明天完成签到,获得积分10
10秒前
科目三应助洁净雨采纳,获得10
10秒前
11秒前
Visy发布了新的文献求助10
11秒前
fighting完成签到,获得积分10
11秒前
11秒前
12秒前
Rjj完成签到,获得积分10
12秒前
12秒前
wennnnbin完成签到,获得积分10
12秒前
呆萌雪晴发布了新的文献求助10
13秒前
wsy1029完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653156
求助须知:如何正确求助?哪些是违规求助? 4789346
关于积分的说明 15062969
捐赠科研通 4811762
什么是DOI,文献DOI怎么找? 2574063
邀请新用户注册赠送积分活动 1529786
关于科研通互助平台的介绍 1488445