Magnetic MnFe2O4 nanoparticles anchored on sludge-derived biochar in activating peroxydisulfate for levofloxacin degradation: Mechanism, degradation pathways and cost analysis

过氧二硫酸盐 催化作用 生物炭 降级(电信) 线性扫描伏安法 X射线光电子能谱 化学 热解 核化学 化学工程 无机化学 材料科学 电化学 循环伏安法 有机化学 电信 电极 物理化学 计算机科学 工程类
作者
Xiaoyan Meng,Tingting Song,Chao Zhang,Huayu Wang,Ming Ge,Changsheng Guo
出处
期刊:Journal of environmental chemical engineering [Elsevier]
卷期号:11 (3): 110241-110241 被引量:28
标识
DOI:10.1016/j.jece.2023.110241
摘要

The sludge-derived biochar (SBC) was prepared by a low-cost microwave pyrolysis process, and then MnFe2O4 nanoparticles were anchored onto the surface of SBC through a hydrothermal route to construct a magnetic MnFe2O4/SBC composite catalyst. As-obtained MnFe2O4/SBC catalysts were characterized by XRD, FT-IR, Raman, FE-SEM, BET surface area and XPS. The optimized MnFe2O4/SBC(1:3) catalyst showed a higher catalytic activity to activate peroxydisulfate (PDS) for levofloxacin (LVF) degradation than that of SBC, MnFe2O4 and reported magnetic composite catalysts. After 80 min of reaction, 79.5% of LVF in water (10 mg/L) was degraded by MnFe2O4/SBC(1:3) in the presence of PDS (1.5 g/L), and LVF degradation followed the pseudo-second-order kinetics. Calcium carbonate (CaCO3) in SBC participates in PDS activation. XPS analysis, oxidative species capture experiments, EPR and linear sweep voltammetry (LSV) tests confirmed that LVF degradation in MnFe2O4/SBC-PDS oxidation system was achieved through the non-radical (electron transfer, 1O2) and radical (SO4•−, ∙OH and O2•−) pathways, with the former playing a dominant role. The degradation routes of LVF were established based on the degradation intermediates. LVF removal efficiency from real water matrices was improved by means of increasing catalyst dosage and reaction temperature. Cost analysis indicates that MnFe2O4/SBC-PDS oxidation process is a cost-effective method to eliminate the antibiotics in water.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜美乘云完成签到,获得积分10
1秒前
万能图书馆应助嘿嘿采纳,获得10
1秒前
3秒前
3秒前
xuxin完成签到 ,获得积分10
4秒前
大模型应助温柔柜子采纳,获得10
4秒前
啦啦啦完成签到,获得积分10
4秒前
易点邦发布了新的文献求助10
5秒前
5秒前
yyymmm完成签到,获得积分10
7秒前
Anna完成签到 ,获得积分10
8秒前
9秒前
10秒前
10秒前
10秒前
10秒前
小西完成签到 ,获得积分0
10秒前
科目三应助黄超采纳,获得10
10秒前
11秒前
11秒前
12秒前
情怀应助YANYAN采纳,获得10
13秒前
嘿嘿发布了新的文献求助10
14秒前
锅锅发布了新的文献求助10
14秒前
充电宝应助是墩墩呀采纳,获得10
16秒前
18秒前
风清扬发布了新的文献求助10
18秒前
18秒前
晴朗发布了新的文献求助10
18秒前
19秒前
温柔柜子发布了新的文献求助10
21秒前
LOST完成签到 ,获得积分10
22秒前
关复观发布了新的文献求助10
22秒前
asdfzxcv应助易点邦采纳,获得10
22秒前
22秒前
嘿嘿完成签到,获得积分10
23秒前
TB123完成签到,获得积分10
24秒前
seun发布了新的文献求助10
24秒前
24秒前
小马甲应助锅锅采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637867
求助须知:如何正确求助?哪些是违规求助? 4744182
关于积分的说明 15000410
捐赠科研通 4796064
什么是DOI,文献DOI怎么找? 2562285
邀请新用户注册赠送积分活动 1521829
关于科研通互助平台的介绍 1481714