A bifunctional polycentric-affinity MOF/MXene heterojunction-based molecularly imprinted photoelectrochemical organophosphorus-sensing platform

光电流 双功能 异质结 X射线光电子能谱 化学 光电化学 电子亲和性(数据页) 分子印迹 检出限 纳米技术 材料科学 化学工程 光电子学 选择性 电极 分子 电化学 物理化学 有机化学 催化作用 工程类 色谱法
作者
Xionghui Ma,Jinsheng Kang,Yu‐Wei Wu,Chaohai Pang,Shuhuai Li,Jianping Li,Yuhao Xiong,Jinhui Luo,Mingyue Wang,Zhixiang Xu
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:469: 143888-143888 被引量:23
标识
DOI:10.1016/j.cej.2023.143888
摘要

The analytical functionalization of metal organic frameworks (MOFs) has been an extremely attractive topic in photoelectrochemical (PEC) sensing. However, most PEC sensors based on photoactive MOFs are more focused on the acquisition and amplification of semiconductor photoelectric signals, and the study of affinity mechanisms for specific targets is more limited. Here, we find that PCN-224 (Zn) can effectively sense organophosphorus structures through a multicenter affinity mechanism, as evidenced by x-ray photoelectron spectroscopy (XPS) and computational chemistry. Further, we coupled PCN-224(Zn) to Nb4C3 to form a Schottky junction that enhances the photoelectric signal response of the sensor. In particular, the heterojunction exhibited a higher photocurrent density than pristine PCN-224(Zn) (17.3 μA vs. 26.5 μA cm−2). On the basis, we developed a novel MOF-based polycentric-affinity PEC sensing strategy for dimethoate (DIM) detection in concert with molecular imprinting technology. The affinity effects of the Lewis acidic center sites (Zn(II), Zr(IV)) and spatial matching through molecular imprinting synergistically ensure that DIM is precisely captured. Ultimately, a trace DIM-PEC sensor was constructed by a competitive strategy using dopamine as an electron donor. The photocurrent intensity was linearly related to the logarithm of DIM concentration in the range of 0.1 nM to 1000 nM, with a low detection limit of 26.1 pM (3σ/S). This study demonstrates the potential of bifunctional polycentric-affinity MOF in the PEC sensing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hgcyp完成签到,获得积分10
3秒前
ysh完成签到,获得积分10
3秒前
3秒前
5秒前
5秒前
6秒前
wang完成签到,获得积分10
7秒前
Jzhang应助Yimim采纳,获得10
8秒前
沐风发布了新的文献求助20
9秒前
汉关发布了新的文献求助10
11秒前
11秒前
葶儿完成签到,获得积分10
11秒前
安详中蓝完成签到 ,获得积分10
12秒前
呆萌士晋发布了新的文献求助10
12秒前
12秒前
14秒前
呆头发布了新的文献求助10
16秒前
若水发布了新的文献求助200
17秒前
17秒前
18秒前
子川发布了新的文献求助10
18秒前
大头娃娃没下巴完成签到,获得积分10
20秒前
liyuchen完成签到,获得积分10
20秒前
CipherSage应助Lxxx_7采纳,获得10
21秒前
烟花应助永远少年采纳,获得10
21秒前
meng发布了新的文献求助10
23秒前
科研通AI5应助贪吃的猴子采纳,获得10
25秒前
25秒前
可爱的彩虹完成签到,获得积分10
25秒前
小确幸完成签到,获得积分10
25秒前
彭于晏应助毛毛虫采纳,获得10
26秒前
LilyChen完成签到 ,获得积分10
26秒前
Owen应助Su采纳,获得10
26秒前
26秒前
26秒前
27秒前
28秒前
yyyy关注了科研通微信公众号
28秒前
Jane完成签到 ,获得积分10
29秒前
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824