亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Preoperative prediction of microvascular invasion and perineural invasion in pancreatic ductal adenocarcinoma with 18F-FDG PET/CT radiomics analysis

医学 无线电技术 接收机工作特性 旁侵犯 胰腺导管腺癌 放射科 正电子发射断层摄影术 核医学 胰腺癌 癌症 内科学
作者
Chun Jiang,Yuan Yang,Bingxin Gu,Euijoon Ahn,Jinna Kim,Dagan Feng,Qiu Huang,Shaoli Song
出处
期刊:Clinical Radiology [Elsevier BV]
卷期号:78 (9): 687-696 被引量:3
标识
DOI:10.1016/j.crad.2023.05.007
摘要

•18F-FDG PET/CT-derived radiomics was useful. •3 mm-dilation was the best. •This model can inspire more research. AIM To develop and validate a predictive model based on 2-[18F]-fluoro-2-deoxy-d-glucose (18F-FDG) positron-emission tomography (PET)/computed tomography (CT) radiomics features and clinicopathological parameters to preoperatively identify microvascular invasion (MVI) and perineural invasion (PNI), which are important predictors of poor prognosis in patients with pancreatic ductal adenocarcinoma (PDAC). MATERIALS AND METHODS Preoperative 18F-FDG PET/CT images and clinicopathological parameters of 170 patients in PDAC were collected retrospectively. The whole tumour and its peritumoural variants (tumour dilated with 3, 5, and 10 mm pixels) were applied to add tumour periphery information. A feature-selection algorithm was employed to mine mono-modality and fused feature subsets, then conducted binary classification using gradient boosted decision trees. RESULTS For MVI prediction, the model performed best on a fused subset of 18F-FDG PET/CT radiomics features and two clinicopathological parameters, with an area under the receiver operating characteristic curve (AUC) of 83.08%, accuracy of 78.82%, recall of 75.08%, precision of 75.5%, and F1-score of 74.59%. For PNI prediction, the model achieved best prediction results only on the subset of PET/CT radiomics features, with AUC of 94%, accuracy of 89.33%, recall of 90%, precision of 87.81%, and F1 score of 88.35%. In both models, 3 mm dilation on the tumour volume produced the best results. CONCLUSIONS The radiomics predictors from preoperative 18F-FDG PET/CT imaging exhibited instructive predictive efficacy in the identification of MVI and PNI status preoperatively in PDAC. Peritumoural information was shown to assist in MVI and PNI predictions. To develop and validate a predictive model based on 2-[18F]-fluoro-2-deoxy-d-glucose (18F-FDG) positron-emission tomography (PET)/computed tomography (CT) radiomics features and clinicopathological parameters to preoperatively identify microvascular invasion (MVI) and perineural invasion (PNI), which are important predictors of poor prognosis in patients with pancreatic ductal adenocarcinoma (PDAC). Preoperative 18F-FDG PET/CT images and clinicopathological parameters of 170 patients in PDAC were collected retrospectively. The whole tumour and its peritumoural variants (tumour dilated with 3, 5, and 10 mm pixels) were applied to add tumour periphery information. A feature-selection algorithm was employed to mine mono-modality and fused feature subsets, then conducted binary classification using gradient boosted decision trees. For MVI prediction, the model performed best on a fused subset of 18F-FDG PET/CT radiomics features and two clinicopathological parameters, with an area under the receiver operating characteristic curve (AUC) of 83.08%, accuracy of 78.82%, recall of 75.08%, precision of 75.5%, and F1-score of 74.59%. For PNI prediction, the model achieved best prediction results only on the subset of PET/CT radiomics features, with AUC of 94%, accuracy of 89.33%, recall of 90%, precision of 87.81%, and F1 score of 88.35%. In both models, 3 mm dilation on the tumour volume produced the best results. The radiomics predictors from preoperative 18F-FDG PET/CT imaging exhibited instructive predictive efficacy in the identification of MVI and PNI status preoperatively in PDAC. Peritumoural information was shown to assist in MVI and PNI predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
coraline26发布了新的文献求助10
9秒前
trophozoite完成签到 ,获得积分10
10秒前
kuoping完成签到,获得积分0
17秒前
37秒前
coraline26完成签到,获得积分10
50秒前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
dida完成签到,获得积分10
1分钟前
1分钟前
可颂歌发布了新的文献求助10
1分钟前
chen完成签到 ,获得积分10
1分钟前
1分钟前
GPTea完成签到,获得积分0
2分钟前
ffff完成签到 ,获得积分10
2分钟前
桥西小河完成签到 ,获得积分10
3分钟前
认真的幻姬完成签到,获得积分10
3分钟前
吃零食吃不下饭完成签到,获得积分10
3分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
5分钟前
6分钟前
秋天完成签到,获得积分10
6分钟前
6分钟前
小二郎应助馍菇采纳,获得30
6分钟前
小安发布了新的文献求助10
6分钟前
Yini应助科研通管家采纳,获得10
7分钟前
7分钟前
忘忧Aquarius完成签到,获得积分10
8分钟前
8分钟前
xinxin完成签到,获得积分10
8分钟前
Mingyue123完成签到,获得积分10
8分钟前
Yini应助科研通管家采纳,获得10
9分钟前
9分钟前
玛琳卡迪马完成签到 ,获得积分10
9分钟前
xuexue0001发布了新的文献求助10
9分钟前
xiaofeiyan完成签到 ,获得积分10
9分钟前
10分钟前
量子星尘发布了新的文献求助150
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4974234
求助须知:如何正确求助?哪些是违规求助? 4229473
关于积分的说明 13172639
捐赠科研通 4018576
什么是DOI,文献DOI怎么找? 2198998
邀请新用户注册赠送积分活动 1211572
关于科研通互助平台的介绍 1126882