亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Preoperative prediction of microvascular invasion and perineural invasion in pancreatic ductal adenocarcinoma with 18F-FDG PET/CT radiomics analysis

医学 无线电技术 接收机工作特性 旁侵犯 胰腺导管腺癌 放射科 正电子发射断层摄影术 核医学 胰腺癌 癌症 内科学
作者
Chun Jiang,Yuan Yang,Bingxin Gu,Euijoon Ahn,Jinna Kim,Dagan Feng,Qiu Huang,Shaoli Song
出处
期刊:Clinical Radiology [Elsevier]
卷期号:78 (9): 687-696 被引量:3
标识
DOI:10.1016/j.crad.2023.05.007
摘要

•18F-FDG PET/CT-derived radiomics was useful. •3 mm-dilation was the best. •This model can inspire more research. AIM To develop and validate a predictive model based on 2-[18F]-fluoro-2-deoxy-d-glucose (18F-FDG) positron-emission tomography (PET)/computed tomography (CT) radiomics features and clinicopathological parameters to preoperatively identify microvascular invasion (MVI) and perineural invasion (PNI), which are important predictors of poor prognosis in patients with pancreatic ductal adenocarcinoma (PDAC). MATERIALS AND METHODS Preoperative 18F-FDG PET/CT images and clinicopathological parameters of 170 patients in PDAC were collected retrospectively. The whole tumour and its peritumoural variants (tumour dilated with 3, 5, and 10 mm pixels) were applied to add tumour periphery information. A feature-selection algorithm was employed to mine mono-modality and fused feature subsets, then conducted binary classification using gradient boosted decision trees. RESULTS For MVI prediction, the model performed best on a fused subset of 18F-FDG PET/CT radiomics features and two clinicopathological parameters, with an area under the receiver operating characteristic curve (AUC) of 83.08%, accuracy of 78.82%, recall of 75.08%, precision of 75.5%, and F1-score of 74.59%. For PNI prediction, the model achieved best prediction results only on the subset of PET/CT radiomics features, with AUC of 94%, accuracy of 89.33%, recall of 90%, precision of 87.81%, and F1 score of 88.35%. In both models, 3 mm dilation on the tumour volume produced the best results. CONCLUSIONS The radiomics predictors from preoperative 18F-FDG PET/CT imaging exhibited instructive predictive efficacy in the identification of MVI and PNI status preoperatively in PDAC. Peritumoural information was shown to assist in MVI and PNI predictions. To develop and validate a predictive model based on 2-[18F]-fluoro-2-deoxy-d-glucose (18F-FDG) positron-emission tomography (PET)/computed tomography (CT) radiomics features and clinicopathological parameters to preoperatively identify microvascular invasion (MVI) and perineural invasion (PNI), which are important predictors of poor prognosis in patients with pancreatic ductal adenocarcinoma (PDAC). Preoperative 18F-FDG PET/CT images and clinicopathological parameters of 170 patients in PDAC were collected retrospectively. The whole tumour and its peritumoural variants (tumour dilated with 3, 5, and 10 mm pixels) were applied to add tumour periphery information. A feature-selection algorithm was employed to mine mono-modality and fused feature subsets, then conducted binary classification using gradient boosted decision trees. For MVI prediction, the model performed best on a fused subset of 18F-FDG PET/CT radiomics features and two clinicopathological parameters, with an area under the receiver operating characteristic curve (AUC) of 83.08%, accuracy of 78.82%, recall of 75.08%, precision of 75.5%, and F1-score of 74.59%. For PNI prediction, the model achieved best prediction results only on the subset of PET/CT radiomics features, with AUC of 94%, accuracy of 89.33%, recall of 90%, precision of 87.81%, and F1 score of 88.35%. In both models, 3 mm dilation on the tumour volume produced the best results. The radiomics predictors from preoperative 18F-FDG PET/CT imaging exhibited instructive predictive efficacy in the identification of MVI and PNI status preoperatively in PDAC. Peritumoural information was shown to assist in MVI and PNI predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助yue采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
大个应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
咸鱼完成签到 ,获得积分10
22秒前
yue完成签到,获得积分10
27秒前
万能图书馆应助咸鱼采纳,获得10
36秒前
呜呼完成签到,获得积分10
49秒前
桐桐应助加湿器采纳,获得10
1分钟前
1分钟前
夏佳泽发布了新的文献求助10
1分钟前
天雨流芳完成签到 ,获得积分10
1分钟前
Jasper应助夏佳泽采纳,获得10
1分钟前
kytm完成签到,获得积分10
1分钟前
2分钟前
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
可靠的一手完成签到 ,获得积分10
2分钟前
whoknowsname发布了新的文献求助10
3分钟前
3分钟前
孙宝锋发布了新的文献求助10
3分钟前
3分钟前
孙宝锋完成签到,获得积分10
3分钟前
ZaZa完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
学生信的大叔完成签到,获得积分10
4分钟前
和谐的芷文完成签到 ,获得积分10
4分钟前
4分钟前
whoknowsname发布了新的文献求助10
4分钟前
5分钟前
傲娇泥猴桃完成签到 ,获得积分10
5分钟前
5分钟前
TongKY完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
王者归来完成签到,获得积分10
6分钟前
raki发布了新的文献求助10
6分钟前
田様应助科研通管家采纳,获得10
6分钟前
Shine发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5323925
求助须知:如何正确求助?哪些是违规求助? 4465024
关于积分的说明 13893967
捐赠科研通 4356721
什么是DOI,文献DOI怎么找? 2392995
邀请新用户注册赠送积分活动 1386535
关于科研通互助平台的介绍 1356693