Preoperative prediction of microvascular invasion and perineural invasion in pancreatic ductal adenocarcinoma with 18F-FDG PET/CT radiomics analysis

医学 无线电技术 接收机工作特性 旁侵犯 胰腺导管腺癌 放射科 正电子发射断层摄影术 核医学 胰腺癌 癌症 内科学
作者
Chunming Jiang,Yuan Yuan,Bingxin Gu,Euijoon Ahn,Jinman Kim,Dagan Feng,Huang Qiu,Shaoli Song
出处
期刊:Clinical Radiology [Elsevier]
卷期号:78 (9): 687-696
标识
DOI:10.1016/j.crad.2023.05.007
摘要

•18F-FDG PET/CT-derived radiomics was useful. •3 mm-dilation was the best. •This model can inspire more research. AIM To develop and validate a predictive model based on 2-[18F]-fluoro-2-deoxy-d-glucose (18F-FDG) positron-emission tomography (PET)/computed tomography (CT) radiomics features and clinicopathological parameters to preoperatively identify microvascular invasion (MVI) and perineural invasion (PNI), which are important predictors of poor prognosis in patients with pancreatic ductal adenocarcinoma (PDAC). MATERIALS AND METHODS Preoperative 18F-FDG PET/CT images and clinicopathological parameters of 170 patients in PDAC were collected retrospectively. The whole tumour and its peritumoural variants (tumour dilated with 3, 5, and 10 mm pixels) were applied to add tumour periphery information. A feature-selection algorithm was employed to mine mono-modality and fused feature subsets, then conducted binary classification using gradient boosted decision trees. RESULTS For MVI prediction, the model performed best on a fused subset of 18F-FDG PET/CT radiomics features and two clinicopathological parameters, with an area under the receiver operating characteristic curve (AUC) of 83.08%, accuracy of 78.82%, recall of 75.08%, precision of 75.5%, and F1-score of 74.59%. For PNI prediction, the model achieved best prediction results only on the subset of PET/CT radiomics features, with AUC of 94%, accuracy of 89.33%, recall of 90%, precision of 87.81%, and F1 score of 88.35%. In both models, 3 mm dilation on the tumour volume produced the best results. CONCLUSIONS The radiomics predictors from preoperative 18F-FDG PET/CT imaging exhibited instructive predictive efficacy in the identification of MVI and PNI status preoperatively in PDAC. Peritumoural information was shown to assist in MVI and PNI predictions. To develop and validate a predictive model based on 2-[18F]-fluoro-2-deoxy-d-glucose (18F-FDG) positron-emission tomography (PET)/computed tomography (CT) radiomics features and clinicopathological parameters to preoperatively identify microvascular invasion (MVI) and perineural invasion (PNI), which are important predictors of poor prognosis in patients with pancreatic ductal adenocarcinoma (PDAC). Preoperative 18F-FDG PET/CT images and clinicopathological parameters of 170 patients in PDAC were collected retrospectively. The whole tumour and its peritumoural variants (tumour dilated with 3, 5, and 10 mm pixels) were applied to add tumour periphery information. A feature-selection algorithm was employed to mine mono-modality and fused feature subsets, then conducted binary classification using gradient boosted decision trees. For MVI prediction, the model performed best on a fused subset of 18F-FDG PET/CT radiomics features and two clinicopathological parameters, with an area under the receiver operating characteristic curve (AUC) of 83.08%, accuracy of 78.82%, recall of 75.08%, precision of 75.5%, and F1-score of 74.59%. For PNI prediction, the model achieved best prediction results only on the subset of PET/CT radiomics features, with AUC of 94%, accuracy of 89.33%, recall of 90%, precision of 87.81%, and F1 score of 88.35%. In both models, 3 mm dilation on the tumour volume produced the best results. The radiomics predictors from preoperative 18F-FDG PET/CT imaging exhibited instructive predictive efficacy in the identification of MVI and PNI status preoperatively in PDAC. Peritumoural information was shown to assist in MVI and PNI predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
ZYT发布了新的文献求助10
3秒前
5秒前
葡萄干发布了新的文献求助10
5秒前
Beebee24完成签到,获得积分10
6秒前
7秒前
静越完成签到 ,获得积分10
11秒前
科目三应助Kira采纳,获得10
12秒前
12秒前
菲比给菲比的求助进行了留言
12秒前
英俊的铭应助晊恦采纳,获得10
13秒前
16秒前
leeom完成签到 ,获得积分10
18秒前
19秒前
20秒前
21秒前
19111867526完成签到,获得积分10
23秒前
Kira发布了新的文献求助10
25秒前
25秒前
完美世界应助啦啦啦采纳,获得10
26秒前
27秒前
HP完成签到,获得积分10
27秒前
bkagyin应助leeOOO采纳,获得10
29秒前
ty完成签到 ,获得积分10
30秒前
文艺书雪发布了新的文献求助10
30秒前
晊恦发布了新的文献求助10
31秒前
31秒前
31秒前
dracovu完成签到,获得积分10
33秒前
34秒前
ZYT完成签到,获得积分10
38秒前
92626完成签到,获得积分10
38秒前
zwy完成签到 ,获得积分10
39秒前
leeOOO发布了新的文献求助10
40秒前
42秒前
竹筏过海应助大霖采纳,获得40
44秒前
47秒前
小jiojio的猪完成签到,获得积分10
48秒前
weishuhan发布了新的文献求助10
49秒前
晊恦完成签到,获得积分10
50秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149387
求助须知:如何正确求助?哪些是违规求助? 2800406
关于积分的说明 7840028
捐赠科研通 2458019
什么是DOI,文献DOI怎么找? 1308162
科研通“疑难数据库(出版商)”最低求助积分说明 628456
版权声明 601706