Preoperative prediction of microvascular invasion and perineural invasion in pancreatic ductal adenocarcinoma with 18F-FDG PET/CT radiomics analysis

医学 无线电技术 接收机工作特性 旁侵犯 胰腺导管腺癌 放射科 正电子发射断层摄影术 核医学 胰腺癌 癌症 内科学
作者
Chun Jiang,Yuan Yang,Bingxin Gu,Euijoon Ahn,Jinna Kim,Dagan Feng,Qiu Huang,Shaoli Song
出处
期刊:Clinical Radiology [Elsevier]
卷期号:78 (9): 687-696 被引量:1
标识
DOI:10.1016/j.crad.2023.05.007
摘要

•18F-FDG PET/CT-derived radiomics was useful. •3 mm-dilation was the best. •This model can inspire more research. AIM To develop and validate a predictive model based on 2-[18F]-fluoro-2-deoxy-d-glucose (18F-FDG) positron-emission tomography (PET)/computed tomography (CT) radiomics features and clinicopathological parameters to preoperatively identify microvascular invasion (MVI) and perineural invasion (PNI), which are important predictors of poor prognosis in patients with pancreatic ductal adenocarcinoma (PDAC). MATERIALS AND METHODS Preoperative 18F-FDG PET/CT images and clinicopathological parameters of 170 patients in PDAC were collected retrospectively. The whole tumour and its peritumoural variants (tumour dilated with 3, 5, and 10 mm pixels) were applied to add tumour periphery information. A feature-selection algorithm was employed to mine mono-modality and fused feature subsets, then conducted binary classification using gradient boosted decision trees. RESULTS For MVI prediction, the model performed best on a fused subset of 18F-FDG PET/CT radiomics features and two clinicopathological parameters, with an area under the receiver operating characteristic curve (AUC) of 83.08%, accuracy of 78.82%, recall of 75.08%, precision of 75.5%, and F1-score of 74.59%. For PNI prediction, the model achieved best prediction results only on the subset of PET/CT radiomics features, with AUC of 94%, accuracy of 89.33%, recall of 90%, precision of 87.81%, and F1 score of 88.35%. In both models, 3 mm dilation on the tumour volume produced the best results. CONCLUSIONS The radiomics predictors from preoperative 18F-FDG PET/CT imaging exhibited instructive predictive efficacy in the identification of MVI and PNI status preoperatively in PDAC. Peritumoural information was shown to assist in MVI and PNI predictions. To develop and validate a predictive model based on 2-[18F]-fluoro-2-deoxy-d-glucose (18F-FDG) positron-emission tomography (PET)/computed tomography (CT) radiomics features and clinicopathological parameters to preoperatively identify microvascular invasion (MVI) and perineural invasion (PNI), which are important predictors of poor prognosis in patients with pancreatic ductal adenocarcinoma (PDAC). Preoperative 18F-FDG PET/CT images and clinicopathological parameters of 170 patients in PDAC were collected retrospectively. The whole tumour and its peritumoural variants (tumour dilated with 3, 5, and 10 mm pixels) were applied to add tumour periphery information. A feature-selection algorithm was employed to mine mono-modality and fused feature subsets, then conducted binary classification using gradient boosted decision trees. For MVI prediction, the model performed best on a fused subset of 18F-FDG PET/CT radiomics features and two clinicopathological parameters, with an area under the receiver operating characteristic curve (AUC) of 83.08%, accuracy of 78.82%, recall of 75.08%, precision of 75.5%, and F1-score of 74.59%. For PNI prediction, the model achieved best prediction results only on the subset of PET/CT radiomics features, with AUC of 94%, accuracy of 89.33%, recall of 90%, precision of 87.81%, and F1 score of 88.35%. In both models, 3 mm dilation on the tumour volume produced the best results. The radiomics predictors from preoperative 18F-FDG PET/CT imaging exhibited instructive predictive efficacy in the identification of MVI and PNI status preoperatively in PDAC. Peritumoural information was shown to assist in MVI and PNI predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rrr发布了新的文献求助10
刚刚
科研通AI5应助zmy采纳,获得10
1秒前
William鉴哲发布了新的文献求助10
1秒前
情怀应助只道寻常采纳,获得10
2秒前
2秒前
cyy完成签到,获得积分20
2秒前
orixero应助小庄采纳,获得10
3秒前
4秒前
侦察兵发布了新的文献求助10
4秒前
司徒元瑶完成签到 ,获得积分10
4秒前
梓榆发布了新的文献求助10
4秒前
4秒前
sweetbearm应助通~采纳,获得10
4秒前
斯文败类应助成就映秋采纳,获得10
5秒前
123456完成签到,获得积分10
5秒前
5秒前
moonlin完成签到 ,获得积分10
5秒前
6秒前
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
8秒前
wanci应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
思源应助蟹黄堡不打折采纳,获得10
8秒前
Lily应助科研通管家采纳,获得40
8秒前
敬老院N号应助科研通管家采纳,获得30
8秒前
zzzq应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
皮皮完成签到 ,获得积分10
8秒前
sallltyyy发布了新的文献求助10
8秒前
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
QPP完成签到,获得积分10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得30
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794