Spectral Reconstruction From Satellite Multispectral Imagery Using Convolution and Transformer Joint Network

多光谱图像 计算机科学 高光谱成像 人工智能 遥感 像素 特征提取 卷积(计算机科学) 卫星 光谱带 块(置换群论) 模式识别(心理学) 迭代重建 特征(语言学) 计算机视觉 地质学 人工神经网络 数学 几何学 工程类 航空航天工程 语言学 哲学
作者
Dakuan Du,Yanfeng Gu,Tianzhu Liu,Xian Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:14
标识
DOI:10.1109/tgrs.2023.3285893
摘要

Spectral reconstruction based on satellite multispectral (MS) images can produce high spatial resolution hyperspectral (HS) images at a reasonable cost, significantly expanding the application of satellite-based HS remote sensing. As a challenging ill-posed problem, existing methods have difficulty making full use of local and global information of space and spectra to guide the reconstruction, resulting in limited accuracy in large-scale scenes with complex ground features and severe spectral mixing. In this article, we propose a novel convolution and Transformer joint network (CTJN) to address the challenge of high-accuracy spectral reconstruction in complex scenes. The CTJN is cascaded with shallow feature extraction modules (SFEMs) and deep feature extraction modules (DFEMs), which can explore local spatial features and global spectral features. Besides, a high-frequency Transformer block (HF-TB) is designed to highlight the detailed features of the images to prevent significant high-frequency information loss, which could improve the reconstruction results in regions with drastic feature changes. Moreover, a spatial–spectral recalibration block (SSRB) is proposed to perform explicit constraints on the reconstructed points by exploiting the correlation among neighboring pixels and adjacent spectra. Extensive experimental results on four HS–MS datasets and one MS dataset demonstrate that the proposed CTJN outperforms the state-of-the-art methods in large-scale and small-scale scenes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RUI完成签到,获得积分0
1秒前
ding应助guard采纳,获得30
1秒前
xxfsx应助Sissi采纳,获得10
2秒前
浮游应助饱满含蕾采纳,获得30
3秒前
你好棒呀完成签到,获得积分10
5秒前
5秒前
zzz完成签到,获得积分10
5秒前
5秒前
6秒前
yc完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
7秒前
宋天宇发布了新的文献求助10
9秒前
taco发布了新的文献求助10
10秒前
mtt完成签到,获得积分10
10秒前
科研通AI6应助赵与成采纳,获得10
10秒前
夏木发布了新的文献求助10
10秒前
11秒前
科研通AI6应助四体不勤采纳,获得10
11秒前
归尘发布了新的文献求助10
11秒前
Yang发布了新的文献求助10
11秒前
12秒前
蛮不讲李发布了新的文献求助10
12秒前
13秒前
16秒前
16秒前
huzherui发布了新的文献求助10
17秒前
想想关注了科研通微信公众号
17秒前
xiaojinzi完成签到,获得积分10
18秒前
马马发布了新的文献求助10
18秒前
乐观黎云发布了新的文献求助10
18秒前
guard发布了新的文献求助30
19秒前
19秒前
19秒前
科目三应助搞怪的甜瓜采纳,获得10
19秒前
hiding完成签到 ,获得积分10
20秒前
Yang完成签到,获得积分10
20秒前
归尘发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457785
求助须知:如何正确求助?哪些是违规求助? 4564032
关于积分的说明 14293222
捐赠科研通 4488797
什么是DOI,文献DOI怎么找? 2458721
邀请新用户注册赠送积分活动 1448658
关于科研通互助平台的介绍 1424355