亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Knowledge-Guided End-to-End Optimization Framework Based on Reinforcement Learning for Flow Shop Scheduling

强化学习 计算机科学 调度(生产过程) 端到端原则 端铣 人工智能 工程类 运营管理 机械工程 机械加工
作者
Zixiao Pan,Ling Wang,ChenXin Dong,Jing-fang Chen
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 1853-1861 被引量:16
标识
DOI:10.1109/tii.2023.3282313
摘要

Designing an effective and efficient end-to-end optimization framework with good generalization for shop scheduling is an emerging topic in the informational manufacturing system. Existing end-to-end frameworks have achieved satisfactory results for combinatorial optimization problems (COPs), such as traveling salesman problem and vehicle routing problem. However, the performances of these methods in solving complex COPs, such as shop scheduling, need to be improved. In this article, a knowledge-guided end-to-end optimization framework based on reinforcement learning (RL) is proposed to solve the permutation flow shop scheduling problem (PFSP). First, a new policy network is designed based on the problem characteristics to deal with different scales of PFSPs and achieve iterative end-to-end generation. Second, an improved policy-based RL algorithm by using the knowledge accumulated during the training process is designed to enhance the training quality. Third, a knowledge-guided improvement strategy is introduced through the cooperation of local search and supervised learning to improve the learning of the policy. Simulation results and comparisons show that the knowledge-guided end-to-end optimization framework can obtain better results than different kinds of commonly used optimization methods in limited computation time for solving the PFSP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
redz33发布了新的文献求助10
刚刚
学医梅西发布了新的文献求助10
1秒前
真实的瑾瑜完成签到 ,获得积分10
3秒前
fane发布了新的文献求助10
5秒前
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
7秒前
英俊的铭应助小鱼采纳,获得10
11秒前
11秒前
gggghhhh完成签到 ,获得积分10
12秒前
洞两发布了新的文献求助10
16秒前
27秒前
洞两完成签到,获得积分10
27秒前
32秒前
33秒前
34秒前
35秒前
luster完成签到 ,获得积分10
36秒前
37秒前
yyds发布了新的文献求助20
38秒前
good猫妮完成签到,获得积分20
38秒前
飘逸焱完成签到 ,获得积分10
39秒前
范特西完成签到 ,获得积分10
42秒前
momo发布了新的文献求助10
42秒前
vio完成签到,获得积分10
45秒前
万能的悲剧完成签到 ,获得积分10
53秒前
54秒前
yyds完成签到,获得积分10
1分钟前
1分钟前
1分钟前
一粟完成签到 ,获得积分10
1分钟前
梨凉完成签到,获得积分10
1分钟前
舟君儒完成签到,获得积分10
1分钟前
ChloeD完成签到,获得积分10
1分钟前
wtian完成签到,获得积分10
1分钟前
奋斗的绝悟完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476231
求助须知:如何正确求助?哪些是违规求助? 4577910
关于积分的说明 14363115
捐赠科研通 4505792
什么是DOI,文献DOI怎么找? 2468878
邀请新用户注册赠送积分活动 1456491
关于科研通互助平台的介绍 1430126