已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Knowledge-Guided End-to-End Optimization Framework Based on Reinforcement Learning for Flow Shop Scheduling

强化学习 计算机科学 调度(生产过程) 端到端原则 端铣 人工智能 工程类 运营管理 机械工程 机械加工
作者
Zixiao Pan,Ling Wang,ChenXin Dong,Jing-fang Chen
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 1853-1861 被引量:8
标识
DOI:10.1109/tii.2023.3282313
摘要

Designing an effective and efficient end-to-end optimization framework with good generalization for shop scheduling is an emerging topic in the informational manufacturing system. Existing end-to-end frameworks have achieved satisfactory results for combinatorial optimization problems (COPs), such as traveling salesman problem and vehicle routing problem. However, the performances of these methods in solving complex COPs, such as shop scheduling, need to be improved. In this article, a knowledge-guided end-to-end optimization framework based on reinforcement learning (RL) is proposed to solve the permutation flow shop scheduling problem (PFSP). First, a new policy network is designed based on the problem characteristics to deal with different scales of PFSPs and achieve iterative end-to-end generation. Second, an improved policy-based RL algorithm by using the knowledge accumulated during the training process is designed to enhance the training quality. Third, a knowledge-guided improvement strategy is introduced through the cooperation of local search and supervised learning to improve the learning of the policy. Simulation results and comparisons show that the knowledge-guided end-to-end optimization framework can obtain better results than different kinds of commonly used optimization methods in limited computation time for solving the PFSP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
梦回唐朝完成签到 ,获得积分10
2秒前
yee发布了新的文献求助10
4秒前
科研通AI2S应助清蒸小朋友采纳,获得10
7秒前
香蕉觅云应助清蒸小朋友采纳,获得10
7秒前
楼北完成签到,获得积分10
8秒前
痴情的明辉完成签到 ,获得积分10
9秒前
机灵的勒完成签到,获得积分10
9秒前
嗯哼应助泌外科研采纳,获得20
12秒前
Akim应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
13秒前
寻道图强应助科研通管家采纳,获得30
13秒前
14秒前
搜集达人应助zhong采纳,获得10
17秒前
1111chen完成签到 ,获得积分20
20秒前
21秒前
21秒前
猪皮恶人完成签到,获得积分10
23秒前
我要发文章完成签到 ,获得积分10
23秒前
猪皮恶人发布了新的文献求助10
25秒前
26秒前
27秒前
shuhaha完成签到,获得积分10
27秒前
阿仁不想搞科研完成签到 ,获得积分10
30秒前
33秒前
苹果致远发布了新的文献求助10
33秒前
文明8完成签到,获得积分10
35秒前
852应助快乐傲南采纳,获得10
37秒前
38秒前
40秒前
慕青应助MDZZZZZ采纳,获得10
41秒前
yang完成签到 ,获得积分10
41秒前
zhong发布了新的文献求助10
42秒前
快乐傲南完成签到,获得积分10
45秒前
研友_8Y26PL完成签到 ,获得积分10
46秒前
47秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162173
求助须知:如何正确求助?哪些是违规求助? 2813256
关于积分的说明 7899394
捐赠科研通 2472477
什么是DOI,文献DOI怎么找? 1316444
科研通“疑难数据库(出版商)”最低求助积分说明 631317
版权声明 602142