A Knowledge-Guided End-to-End Optimization Framework Based on Reinforcement Learning for Flow Shop Scheduling

强化学习 计算机科学 调度(生产过程) 端到端原则 端铣 人工智能 工程类 运营管理 机械工程 机械加工
作者
Zixiao Pan,Ling Wang,ChenXin Dong,Jing-fang Chen
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 1853-1861 被引量:16
标识
DOI:10.1109/tii.2023.3282313
摘要

Designing an effective and efficient end-to-end optimization framework with good generalization for shop scheduling is an emerging topic in the informational manufacturing system. Existing end-to-end frameworks have achieved satisfactory results for combinatorial optimization problems (COPs), such as traveling salesman problem and vehicle routing problem. However, the performances of these methods in solving complex COPs, such as shop scheduling, need to be improved. In this article, a knowledge-guided end-to-end optimization framework based on reinforcement learning (RL) is proposed to solve the permutation flow shop scheduling problem (PFSP). First, a new policy network is designed based on the problem characteristics to deal with different scales of PFSPs and achieve iterative end-to-end generation. Second, an improved policy-based RL algorithm by using the knowledge accumulated during the training process is designed to enhance the training quality. Third, a knowledge-guided improvement strategy is introduced through the cooperation of local search and supervised learning to improve the learning of the policy. Simulation results and comparisons show that the knowledge-guided end-to-end optimization framework can obtain better results than different kinds of commonly used optimization methods in limited computation time for solving the PFSP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助机灵的向真采纳,获得10
刚刚
1秒前
张利双发布了新的文献求助10
1秒前
英姑应助Zehn采纳,获得10
2秒前
lzy完成签到,获得积分10
3秒前
GXLoveHC完成签到,获得积分20
3秒前
Wendy发布了新的文献求助10
3秒前
乐乐应助吃鱼老墨采纳,获得10
3秒前
4秒前
Jasper应助虚心的冷雪采纳,获得10
4秒前
852应助听禾响采纳,获得10
4秒前
6秒前
烟花应助xiajiahao采纳,获得10
6秒前
6秒前
sample发布了新的文献求助10
7秒前
7秒前
7秒前
keyanyan发布了新的文献求助20
8秒前
9秒前
liu关闭了liu文献求助
9秒前
10秒前
10秒前
caoj完成签到,获得积分20
11秒前
GXLoveHC发布了新的文献求助10
11秒前
11秒前
12秒前
及禾发布了新的文献求助30
12秒前
万能图书馆应助冷静夜蕾采纳,获得10
13秒前
张利双完成签到,获得积分10
13秒前
内向访曼完成签到 ,获得积分10
13秒前
bjwh发布了新的文献求助10
14秒前
zhangzhanyu发布了新的文献求助10
14秒前
yy完成签到,获得积分20
14秒前
14秒前
14秒前
麒煜发布了新的文献求助10
16秒前
16秒前
17秒前
万老头发布了新的文献求助10
18秒前
李先生发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5353034
求助须知:如何正确求助?哪些是违规求助? 4485635
关于积分的说明 13964011
捐赠科研通 4385833
什么是DOI,文献DOI怎么找? 2409586
邀请新用户注册赠送积分活动 1401915
关于科研通互助平台的介绍 1375639