A Knowledge-Guided End-to-End Optimization Framework Based on Reinforcement Learning for Flow Shop Scheduling

强化学习 计算机科学 调度(生产过程) 端到端原则 端铣 人工智能 工程类 运营管理 机械工程 机械加工
作者
Zixiao Pan,Ling Wang,ChenXin Dong,Jing-fang Chen
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 1853-1861 被引量:16
标识
DOI:10.1109/tii.2023.3282313
摘要

Designing an effective and efficient end-to-end optimization framework with good generalization for shop scheduling is an emerging topic in the informational manufacturing system. Existing end-to-end frameworks have achieved satisfactory results for combinatorial optimization problems (COPs), such as traveling salesman problem and vehicle routing problem. However, the performances of these methods in solving complex COPs, such as shop scheduling, need to be improved. In this article, a knowledge-guided end-to-end optimization framework based on reinforcement learning (RL) is proposed to solve the permutation flow shop scheduling problem (PFSP). First, a new policy network is designed based on the problem characteristics to deal with different scales of PFSPs and achieve iterative end-to-end generation. Second, an improved policy-based RL algorithm by using the knowledge accumulated during the training process is designed to enhance the training quality. Third, a knowledge-guided improvement strategy is introduced through the cooperation of local search and supervised learning to improve the learning of the policy. Simulation results and comparisons show that the knowledge-guided end-to-end optimization framework can obtain better results than different kinds of commonly used optimization methods in limited computation time for solving the PFSP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助温柔映阳采纳,获得10
刚刚
mjsdx完成签到 ,获得积分10
刚刚
Jasper应助我爱金哥采纳,获得10
1秒前
顺利煎蛋发布了新的文献求助10
2秒前
2秒前
2秒前
北城发布了新的文献求助10
2秒前
2秒前
CDKSEVEN完成签到,获得积分20
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
zhuanghj5发布了新的文献求助10
5秒前
绵绵球发布了新的文献求助100
5秒前
5秒前
世界上最后一只呜呜怪完成签到,获得积分10
5秒前
cc2713206完成签到,获得积分0
6秒前
九月发布了新的文献求助10
6秒前
6秒前
Jasper应助北城采纳,获得10
8秒前
A阿澍发布了新的文献求助10
8秒前
顺利煎蛋完成签到,获得积分10
8秒前
肖肖发布了新的文献求助10
9秒前
chengmin完成签到 ,获得积分10
9秒前
wei发布了新的文献求助50
9秒前
10秒前
11秒前
sunwen发布了新的文献求助10
11秒前
12秒前
13秒前
北城完成签到,获得积分10
14秒前
十三完成签到 ,获得积分10
15秒前
打打应助傲寒采纳,获得10
15秒前
小李吃小孩完成签到,获得积分10
15秒前
含蓄大雁完成签到,获得积分10
15秒前
16秒前
Livrik发布了新的文献求助10
17秒前
卢敏明发布了新的文献求助10
17秒前
李健应助俏皮的白柏采纳,获得10
18秒前
18秒前
很好关注了科研通微信公众号
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988868
求助须知:如何正确求助?哪些是违规求助? 3531255
关于积分的说明 11253071
捐赠科研通 3269858
什么是DOI,文献DOI怎么找? 1804822
邀请新用户注册赠送积分活动 881994
科研通“疑难数据库(出版商)”最低求助积分说明 809035