A Knowledge-Guided End-to-End Optimization Framework Based on Reinforcement Learning for Flow Shop Scheduling

强化学习 计算机科学 调度(生产过程) 端到端原则 端铣 人工智能 工程类 运营管理 机械工程 机械加工
作者
Zixiao Pan,Ling Wang,ChenXin Dong,Jing-fang Chen
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 1853-1861 被引量:16
标识
DOI:10.1109/tii.2023.3282313
摘要

Designing an effective and efficient end-to-end optimization framework with good generalization for shop scheduling is an emerging topic in the informational manufacturing system. Existing end-to-end frameworks have achieved satisfactory results for combinatorial optimization problems (COPs), such as traveling salesman problem and vehicle routing problem. However, the performances of these methods in solving complex COPs, such as shop scheduling, need to be improved. In this article, a knowledge-guided end-to-end optimization framework based on reinforcement learning (RL) is proposed to solve the permutation flow shop scheduling problem (PFSP). First, a new policy network is designed based on the problem characteristics to deal with different scales of PFSPs and achieve iterative end-to-end generation. Second, an improved policy-based RL algorithm by using the knowledge accumulated during the training process is designed to enhance the training quality. Third, a knowledge-guided improvement strategy is introduced through the cooperation of local search and supervised learning to improve the learning of the policy. Simulation results and comparisons show that the knowledge-guided end-to-end optimization framework can obtain better results than different kinds of commonly used optimization methods in limited computation time for solving the PFSP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
泥沼发布了新的文献求助10
1秒前
jiaojiao完成签到,获得积分10
1秒前
junjieLIU发布了新的文献求助10
1秒前
2秒前
Jess完成签到,获得积分10
2秒前
weiliu发布了新的文献求助10
3秒前
SYLH应助WANGCHU采纳,获得10
4秒前
4秒前
优秀的仙女完成签到,获得积分10
4秒前
5秒前
5秒前
研究僧完成签到,获得积分10
5秒前
songlf23发布了新的文献求助10
5秒前
6秒前
123456完成签到,获得积分20
6秒前
852应助欣喜的沛容采纳,获得10
6秒前
7秒前
8秒前
T_MC郭完成签到,获得积分10
8秒前
玩命的友安完成签到,获得积分10
8秒前
9秒前
欣慰寄风完成签到,获得积分10
9秒前
与yu发布了新的文献求助10
9秒前
nini完成签到 ,获得积分10
10秒前
超级砖家发布了新的文献求助10
10秒前
10秒前
刻苦的秋玲完成签到,获得积分10
10秒前
fcyyc完成签到,获得积分20
11秒前
11秒前
11秒前
11秒前
莫愁完成签到,获得积分10
12秒前
13秒前
顺心梦山完成签到,获得积分10
13秒前
六六完成签到,获得积分10
13秒前
练习者发布了新的文献求助10
13秒前
13秒前
666发布了新的文献求助10
14秒前
xiaoxue完成签到 ,获得积分10
14秒前
科研饼发布了新的文献求助10
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3747956
求助须知:如何正确求助?哪些是违规求助? 3290798
关于积分的说明 10070954
捐赠科研通 3006696
什么是DOI,文献DOI怎么找? 1651241
邀请新用户注册赠送积分活动 786287
科研通“疑难数据库(出版商)”最低求助积分说明 751627