A bimetal strategy for suppressing oxygen release of 4.6V high-voltage single-crystal high-nickel cathode

材料科学 阴极 氧气 电解质 氧化物 电化学 溶解 化学物理 化学工程 分析化学(期刊) 电极 冶金 物理化学 有机化学 化学 工程类 色谱法
作者
Jinsai Tian,Guan Wang,Weihao Zeng,Jiawei Zhu,Weixi Tian,Shaojie Zhang,Yixin Zhang,Junjun Wang,Quan Li,Hongyu Zhao,Changhao Li,Xiangyu Li,Lei Chen,Shichun Mu
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:68: 103344-103344 被引量:45
标识
DOI:10.1016/j.ensm.2024.103344
摘要

High-voltage cathode materials, such as single-crystal high-nickel layered oxide materials, are a necessary condition for achieving high energy density lithium-ion batteries, but they have to be accompanied by the structural instability and irreversible release of lattice oxygen during operation, posing serious safety hazards. Here, to solve the lattice oxygen release issue of single-crystal high-nickel cathode, we propose an improved strategy for overall cathode by synchronously addressing interface and lattice instability, ensuring stable operation at a high voltage up to 4.6 V. By Al-doping, in the bulk phase, we intensify the charge transfer between transition metals and oxygen, and the columnar effect caused by doped atoms effectively alleviates internal strain, thereby significantly limiting lattice shrinkage and then suppressing oxygen release. On the other hand, the protective layer of LiNbO3 as the fast ion conductor formed at the cathode interface suppresses parasitic reactions and hinders lattice oxygen loss caused by dissolution of transition metals. Therefore, after 200 cycles at a cut-off voltage of 4.6 V, our cathode material still maintains a capacity retention rate of 89.1%. Density functional theory (DFT) calculations predict the effective suppression of oxygen release for the modified cathode materials, which has been further confirmed by differential electrochemical mass spectrometry (DEMS) tests. This work provides a new perspective for solving the problem of oxygen release under high cut-off voltage conditions for single crystal high nickel cathode.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
科研通AI6应助一恒采纳,获得10
1秒前
Ava应助4qfguj采纳,获得10
1秒前
共享精神应助体贴的洋葱采纳,获得10
1秒前
种一棵树完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
好吧不是发布了新的文献求助10
2秒前
3秒前
3秒前
坦率邪欢发布了新的文献求助10
4秒前
陆登发布了新的文献求助10
4秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
123发布了新的文献求助10
6秒前
6秒前
7秒前
Zsting发布了新的文献求助10
7秒前
7秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
e746700020发布了新的文献求助10
9秒前
9秒前
超级的丸子完成签到,获得积分10
9秒前
酷酷水壶发布了新的文献求助10
9秒前
喜悦的凝天完成签到,获得积分10
10秒前
bkagyin应助利莫里亚采纳,获得10
10秒前
Leoitch完成签到,获得积分10
10秒前
成小调发布了新的文献求助10
10秒前
彭于晏应助卷卷采纳,获得10
12秒前
12秒前
12秒前
12秒前
不够萌完成签到,获得积分10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5656283
求助须知:如何正确求助?哪些是违规求助? 4802765
关于积分的说明 15075386
捐赠科研通 4814578
什么是DOI,文献DOI怎么找? 2575843
邀请新用户注册赠送积分活动 1531182
关于科研通互助平台的介绍 1489776