电催化剂
催化作用
动力学
化学
阳极
纳米片
析氧
化学工程
无机化学
材料科学
电极
电化学
物理化学
有机化学
工程类
物理
量子力学
作者
Lei Chen,Lei Wang,Jin‐Tao Ren,Haoyu Wang,Wenwen Tian,Minglei Sun,Zhong‐Yong Yuan
标识
DOI:10.1002/smtd.202400108
摘要
Abstract In contrast to the thermodynamically unfavorable anodic oxygen evolution reaction, the electrocatalytic urea oxidation reaction (UOR) presents a more favorable thermodynamic potential. However, the practical application of UOR has been hindered by sluggish kinetics. In this study, hierarchical porous nanosheet arrays featuring abundant Ni‐WO 3 heterointerfaces on nickel foam (Ni‐WO 3 /NF) is introduced as a monolith electrode, demonstrating exceptional activity and stability toward UOR. The Ni‐WO 3 /NF catalyst exhibits unprecedentedly rapid UOR kinetics (200 mA cm −2 at 1.384 V vs. RHE) and a high turnover frequency (0.456 s −1 ), surpassing most previously reported Ni‐based catalysts, with negligible activity decay observed during a durability test lasting 150 h. Ex situ X‐ray photoelectron spectroscopy and density functional theory calculations elucidate that the WO 3 interface significantly modulates the local charge distribution of Ni species, facilitating the generation of Ni 3+ with optimal affinity for interacting with urea molecules and CO 2 intermediates at heterointerfaces during UOR. This mechanism accelerates the interfacial electrocatalytic kinetics. Additionally, in situ Fourier transform infrared spectroscopy provides deep insights into the substantial contribution of interfacial Ni‐WO 3 sites to UOR electrocatalysis, unraveling the underlying molecular‐level mechanisms. Finally, the study explores the application of a direct urea fuel cell to inspire future practical implementations.
科研通智能强力驱动
Strongly Powered by AbleSci AI