Decoupled Knowledge Distillation via Spatial Feature Blurring for Hyperspectral Image Classification

计算机科学 高光谱成像 人工智能 模式识别(心理学) 变压器 卷积神经网络 像素 骨干网 嵌入 人工神经网络 计算机网络 物理 量子力学 电压
作者
Wen Xie,ZheZhe Zhang,Licheng Jiao,Jin Wang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 8938-8955 被引量:2
标识
DOI:10.1109/jstars.2024.3383854
摘要

It is well known that distillation learning has the ability to enhance the performance of a light (student) model by transferring knowledge from a heavy (teacher) model, without incurring additional computational and storage costs. This article proposes an improved decoupled knowledge distillation (DKD) strategy for hyperspectral image (HSI) classification. A spatial feature blurring (SFB) module is designed to improve the classification performance of the student network when using DKD strategy. The SFB module utilizes randomly initialized two-dimensional standard normal distribution tensors to blur the spatial features of HSI, which increases the complexity of the data. This aligns with the characteristics of DKD, which transfers more useful knowledge under the condition of sample complexity. To effectively transfer knowledge, this article proposes a robust teacher network named the dual-branch spatial transformer-spectral transformer (DBSTST) network. This network describes the spatial and spectral long-range dependencies of HSI, addressing the limitations of convolutional neural networks (CNNs) in capturing only local features due to their fixed receptive fields. More specifically, the DBSTST network adopts spatial transformer-spectral transformer (STST) which is composed of a parallel spatial-spectral multi-head self-attention (PS2MHSA) module, aiming to describe pixel-level spatial long-range dependencies and spectral correlations in HSI. Simultaneously, the introduction of spatial-spectral positional embedding into PS2MHSA enhances positional awareness. We demonstrated the effectiveness of our proposed method on four publicly available HSI datasets. The student network achieves classification performance improvement and surpasses some other networks. Moreover, when compared to state-of-the-art classification methods, the DBSTST network also exhibits significant improvements in classification performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
VV完成签到,获得积分10
1秒前
Jasper应助布布采纳,获得10
1秒前
1秒前
科研1完成签到,获得积分20
2秒前
BJiAr发布了新的文献求助10
2秒前
jinkk发布了新的文献求助30
2秒前
ding应助不下雨采纳,获得10
3秒前
小蘑菇应助sya采纳,获得10
3秒前
3秒前
4秒前
4秒前
12345发布了新的文献求助10
5秒前
5秒前
Qixin发布了新的文献求助10
6秒前
甜甜玫瑰应助橘子味的风采纳,获得10
6秒前
飞翔的霸天哥应助ding采纳,获得30
7秒前
zzzz驳回了传奇3应助
7秒前
布布完成签到,获得积分20
7秒前
7秒前
缓慢珠发布了新的文献求助10
9秒前
恍恍惚惚完成签到,获得积分10
9秒前
ghn123456789完成签到,获得积分10
9秒前
9秒前
9秒前
Alahui发布了新的文献求助10
10秒前
李梦琦发布了新的文献求助10
10秒前
典雅诗筠发布了新的文献求助10
10秒前
grisco发布了新的文献求助10
10秒前
心灵美雅山完成签到,获得积分10
11秒前
12秒前
13秒前
小千发布了新的文献求助10
13秒前
德钊完成签到,获得积分10
16秒前
田様应助BJiAr采纳,获得10
16秒前
沉静哲瀚发布了新的文献求助10
16秒前
jinkk完成签到,获得积分10
16秒前
CodeCraft应助grisco采纳,获得10
16秒前
17秒前
布布发布了新的文献求助10
18秒前
18秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3232433
求助须知:如何正确求助?哪些是违规求助? 2879364
关于积分的说明 8210667
捐赠科研通 2546680
什么是DOI,文献DOI怎么找? 1376287
科研通“疑难数据库(出版商)”最低求助积分说明 647594
邀请新用户注册赠送积分活动 622856