Decoupled Knowledge Distillation via Spatial Feature Blurring for Hyperspectral Image Classification

计算机科学 高光谱成像 人工智能 模式识别(心理学) 变压器 卷积神经网络 像素 骨干网 嵌入 人工神经网络 计算机网络 物理 量子力学 电压
作者
Wen Xie,ZheZhe Zhang,Licheng Jiao,Jin Wang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 8938-8955 被引量:2
标识
DOI:10.1109/jstars.2024.3383854
摘要

It is well known that distillation learning has the ability to enhance the performance of a light (student) model by transferring knowledge from a heavy (teacher) model, without incurring additional computational and storage costs. This article proposes an improved decoupled knowledge distillation (DKD) strategy for hyperspectral image (HSI) classification. A spatial feature blurring (SFB) module is designed to improve the classification performance of the student network when using DKD strategy. The SFB module utilizes randomly initialized two-dimensional standard normal distribution tensors to blur the spatial features of HSI, which increases the complexity of the data. This aligns with the characteristics of DKD, which transfers more useful knowledge under the condition of sample complexity. To effectively transfer knowledge, this article proposes a robust teacher network named the dual-branch spatial transformer-spectral transformer (DBSTST) network. This network describes the spatial and spectral long-range dependencies of HSI, addressing the limitations of convolutional neural networks (CNNs) in capturing only local features due to their fixed receptive fields. More specifically, the DBSTST network adopts spatial transformer-spectral transformer (STST) which is composed of a parallel spatial-spectral multi-head self-attention (PS2MHSA) module, aiming to describe pixel-level spatial long-range dependencies and spectral correlations in HSI. Simultaneously, the introduction of spatial-spectral positional embedding into PS2MHSA enhances positional awareness. We demonstrated the effectiveness of our proposed method on four publicly available HSI datasets. The student network achieves classification performance improvement and surpasses some other networks. Moreover, when compared to state-of-the-art classification methods, the DBSTST network also exhibits significant improvements in classification performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wuchun完成签到,获得积分10
1秒前
1秒前
小马甲应助池鲤aa采纳,获得10
1秒前
zongzi12138完成签到,获得积分10
1秒前
行者无疆完成签到,获得积分10
1秒前
科研通AI6应助小人物采纳,获得10
2秒前
冬冬完成签到,获得积分10
2秒前
2秒前
沙一汀绯闻女友完成签到,获得积分10
2秒前
lamelo给lamelo的求助进行了留言
2秒前
好好学习发布了新的文献求助10
2秒前
ddup完成签到,获得积分10
3秒前
3秒前
娇气的翠绿完成签到,获得积分10
3秒前
华姝发布了新的文献求助10
4秒前
善学以致用应助一叶扁舟采纳,获得10
4秒前
4秒前
4秒前
Owen应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
kiwiii发布了新的文献求助10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
chen完成签到,获得积分10
4秒前
咖喱完成签到,获得积分10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得30
4秒前
浮游应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
LYSM应助科研通管家采纳,获得10
5秒前
LYSM应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483374
求助须知:如何正确求助?哪些是违规求助? 4584081
关于积分的说明 14394500
捐赠科研通 4513704
什么是DOI,文献DOI怎么找? 2473645
邀请新用户注册赠送积分活动 1459635
关于科研通互助平台的介绍 1433108