Emergency fire evacuation simulation of underground commercial street

工程类 土木工程 法律工程学 运输工程 建筑工程
作者
Xiaojuan Li,Rixin Chen,Yukui Zhang,C.Y. Jim
出处
期刊:Simulation Modelling Practice and Theory [Elsevier]
卷期号:134: 102929-102929 被引量:1
标识
DOI:10.1016/j.simpat.2024.102929
摘要

High-density built-up areas in cities often enlist the underground realm to provide solution space for transport, shopping and other purposes. The special location, layout, and accessibility of underground structures often generate unique and acute safety-risk concerns. They are inadequately understood and managed and cannot be tackled appropriately by conventional risk assessment and abatement methods. This study focused on evacuating underground commercial streets (UCS) with a heavy concentration of people in Fuzhou city in China. Despite the widespread use of building information modeling (BIM) in construction, it has rarely been applied to studies of underground shopping streets. This study adopted BIM technology as the core method, in conjunction with PyroSim fire and Pathfinder evacuation simulation software. Different fire scenarios in four fire protection zones and the most unfavorable fire sources were set in the model. Based on a calculated number of persons at the start of a fire, different movement paths, stair configuration and exit width were simulated. The choice of escape routes, congestion locations, and slack time windows were identified by the graphical images of the simulation programs. Required safe egress time was compared with available safe egress time, and the number of successful evacuees was reckoned. The effects of three escape-stair forms on evacuee utilization and evacuation rates were evaluated. Their evacuation efficiency was ranked: crossed stair > straight stair > parallel-double stair. The simulation results can optimize building layout design and improve understanding of evacuation-efficiency factors. The findings can contribute to reducing casualties and property losses and improving UCS's fire safety management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
bb完成签到,获得积分10
刚刚
詹良杰完成签到,获得积分10
1秒前
1秒前
搜集达人应助Zz采纳,获得10
2秒前
欣喜亚男发布了新的文献求助10
2秒前
可可西里发布了新的文献求助10
2秒前
3秒前
鱼鱼鱼发布了新的文献求助10
3秒前
3秒前
Tasia发布了新的文献求助10
3秒前
核桃仁发布了新的文献求助10
4秒前
ZYLOOONG完成签到,获得积分20
6秒前
6秒前
7秒前
FBQZDJG2122完成签到,获得积分10
8秒前
脑洞疼应助难过飞瑶采纳,获得30
8秒前
zxm1997发布了新的文献求助10
9秒前
遥远的尧应助机智的仇天采纳,获得10
9秒前
llm发布了新的文献求助10
10秒前
詹良杰发布了新的文献求助10
10秒前
核桃仁完成签到,获得积分10
10秒前
11秒前
南南发布了新的文献求助10
12秒前
852应助欣喜亚男采纳,获得10
13秒前
14秒前
科研通AI2S应助否认冶游史采纳,获得10
14秒前
14秒前
dongdong完成签到 ,获得积分10
15秒前
16秒前
17秒前
吡啶应助从容雨筠采纳,获得20
18秒前
18秒前
无敌小邓历险记完成签到,获得积分20
18秒前
阿湛发布了新的文献求助10
19秒前
19秒前
20秒前
dm完成签到,获得积分10
20秒前
20秒前
minqiu发布了新的文献求助10
20秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157924
求助须知:如何正确求助?哪些是违规求助? 2809233
关于积分的说明 7881039
捐赠科研通 2467723
什么是DOI,文献DOI怎么找? 1313692
科研通“疑难数据库(出版商)”最低求助积分说明 630480
版权声明 601943