On the Connection between Saliency Guided Training and Robustness in Image Classification

稳健性(进化) 人工智能 计算机科学 模式识别(心理学) 上下文图像分类 训练集 连接(主束) 计算机视觉 机器学习 图像(数学) 数学 几何学 生物化学 基因 化学
作者
Ali Karkehabadi,Parisa Oftadeh,Danial Shafaie,Jamshid Hassanpour
标识
DOI:10.1109/icicip60808.2024.10477811
摘要

Although Deep Neural Networks (DNNs) have established a solid place for themselves in different applications, their mysterious inner working impedes their usage in sensitive applications. Interpretability-based methods try to overcome this issue by providing explanations for the models. Saliency Guided Training (SGT) is such method that directs the model's focus toward the most relevant features. This technique enhances the clarity of saliency maps, aiding in a better understanding of the model's decision-making. This research investigates the robustness SGT algorithm against adversarial attacks. Although saliency-guided training promises enhanced interpretability for a reliable application of DNNs, our investigation shows that this method increases the model's vulnerability against adversarial attacks. This study underscores the pressing necessity for researchers to achieve an equilibrium between clarity of interpretation and defense against adversarial interventions. Also, the outcome shows a need for attention when deploying saliency-based DNNs in different applications. We employ diverse architectures such as a conventional CNN, ResNet-18, and the Tiny Transformer on popular datasets such as MNIST, CIFAR-10, CIFAR-100, and Caltech101 to substantiate our conclusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
羞涩的煎饼完成签到,获得积分10
刚刚
感动问枫发布了新的文献求助10
2秒前
顺利哑铃完成签到 ,获得积分10
3秒前
神勇冬莲完成签到,获得积分10
4秒前
5秒前
时间真是解药吗完成签到,获得积分10
5秒前
Zyra完成签到,获得积分10
5秒前
7秒前
bmhs2017应助Zyra采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
9秒前
尉迟希望应助科研通管家采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得30
9秒前
所所应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
是木易呀应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
林洁佳完成签到,获得积分10
9秒前
wml应助科研通管家采纳,获得10
9秒前
思源应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
敬老院N号应助科研通管家采纳,获得30
10秒前
NexusExplorer应助科研通管家采纳,获得30
10秒前
10秒前
10秒前
析木发布了新的文献求助10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
maizi应助科研通管家采纳,获得30
10秒前
Akim应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
诚心寄松应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得30
11秒前
xxfsx应助科研通管家采纳,获得10
11秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379399
求助须知:如何正确求助?哪些是违规求助? 4503761
关于积分的说明 14016516
捐赠科研通 4412511
什么是DOI,文献DOI怎么找? 2423853
邀请新用户注册赠送积分活动 1416678
关于科研通互助平台的介绍 1394244