Rolling Bearing Fault Diagnosis Based on Optimized VMD and SSAE

方位(导航) 断层(地质) 计算机科学 地质学 人工智能 地震学
作者
Baoxian Chang,Xing Zhao,Dawei Guo,Siyu Zhao,Jiyou Fei
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 130746-130762 被引量:3
标识
DOI:10.1109/access.2024.3386835
摘要

The monitoring and fault diagnosis of axle-box bearings in high-speed trains is crucial for ensuring safe train operations. The vibration signals of these bearings exhibit non-stationary and non-linear characteristics. To further enhance the accuracy of identifying rolling bearing faults, a fault diagnosis method is proposed. This method is based on the improved Dung Beetle Optimization (DBO) algorithm for optimizing Variational Mode Decomposition (VMD) combined with Stacked Sparse Autoencoder (SSAE). Firstly, the DBO algorithm is enhanced to improve its optimization precision and global optimization capability. It is then utilized for the adaptive selection of two parameters: the number of decomposition modes and the penalty factor in VMD. These improvements address issues such as mode mixing, signal loss, and excessive decomposition, which arise from poor parameter selection in the traditional VMD method. Subsequently, components of intrinsic mode functions (IMFs) that are highly correlated with the original signal are selected. The time-domain and frequency-domain features of these IMF components are used to construct the dataset. The feature set is then inputted into the deep machine learning model SSAE for training and testing. Through diagnostic experiments on various types and levels of rolling bearing faults, the model demonstrates a higher rate of fault diagnosis recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姚老表完成签到,获得积分10
1秒前
科研通AI6应助任性斑马采纳,获得10
3秒前
汉堡包应助lixioani219采纳,获得10
4秒前
CipherSage应助凉空气采纳,获得10
4秒前
打小就帅发布了新的文献求助10
5秒前
旱田蜗牛发布了新的文献求助10
6秒前
飞飞飞完成签到,获得积分10
7秒前
万能图书馆应助Emanon采纳,获得10
7秒前
科研通AI6应助白玄采纳,获得10
9秒前
共享精神应助白玄采纳,获得10
9秒前
科研通AI5应助白玄采纳,获得10
9秒前
可爱的函函应助白玄采纳,获得10
9秒前
9秒前
赘婿应助白玄采纳,获得10
9秒前
9秒前
汉堡包应助YY88687321采纳,获得10
9秒前
小马甲应助白玄采纳,获得10
9秒前
9秒前
香蕉觅云应助撒西不理采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得150
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得150
10秒前
浮游应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
思源应助科研通管家采纳,获得10
11秒前
amanda应助科研通管家采纳,获得20
11秒前
烟花应助科研通管家采纳,获得10
12秒前
bkagyin应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
昏睡的蟠桃应助科研通管家采纳,获得150
12秒前
SciGPT应助科研通管家采纳,获得10
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
今后应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062030
求助须知:如何正确求助?哪些是违规求助? 4285935
关于积分的说明 13355964
捐赠科研通 4103820
什么是DOI,文献DOI怎么找? 2246990
邀请新用户注册赠送积分活动 1252642
关于科研通互助平台的介绍 1183592