Rolling Bearing Fault Diagnosis Based on Optimized VMD and SSAE

方位(导航) 断层(地质) 计算机科学 地质学 人工智能 地震学
作者
Baoxian Chang,Xing Zhao,Dawei Guo,Siyu Zhao,Jiyou Fei
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 130746-130762 被引量:3
标识
DOI:10.1109/access.2024.3386835
摘要

The monitoring and fault diagnosis of axle-box bearings in high-speed trains is crucial for ensuring safe train operations. The vibration signals of these bearings exhibit non-stationary and non-linear characteristics. To further enhance the accuracy of identifying rolling bearing faults, a fault diagnosis method is proposed. This method is based on the improved Dung Beetle Optimization (DBO) algorithm for optimizing Variational Mode Decomposition (VMD) combined with Stacked Sparse Autoencoder (SSAE). Firstly, the DBO algorithm is enhanced to improve its optimization precision and global optimization capability. It is then utilized for the adaptive selection of two parameters: the number of decomposition modes and the penalty factor in VMD. These improvements address issues such as mode mixing, signal loss, and excessive decomposition, which arise from poor parameter selection in the traditional VMD method. Subsequently, components of intrinsic mode functions (IMFs) that are highly correlated with the original signal are selected. The time-domain and frequency-domain features of these IMF components are used to construct the dataset. The feature set is then inputted into the deep machine learning model SSAE for training and testing. Through diagnostic experiments on various types and levels of rolling bearing faults, the model demonstrates a higher rate of fault diagnosis recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温温发布了新的文献求助10
刚刚
1秒前
王宁宁宁完成签到,获得积分10
2秒前
研友_LMN2rn发布了新的文献求助10
2秒前
Scarlett完成签到 ,获得积分10
2秒前
3秒前
3秒前
3秒前
3秒前
麦子关注了科研通微信公众号
3秒前
幽壑之潜蛟应助Yzz采纳,获得10
3秒前
科研通AI5应助Yzz采纳,获得10
3秒前
4秒前
4秒前
4秒前
4秒前
5秒前
鸽子发布了新的文献求助10
6秒前
高文雅完成签到,获得积分10
7秒前
7秒前
7秒前
李健的小迷弟应助5433采纳,获得10
8秒前
8秒前
李木槿完成签到 ,获得积分10
8秒前
香蕉觅云应助安详靖巧采纳,获得10
8秒前
9秒前
boshi发布了新的文献求助10
9秒前
有趣的银发布了新的文献求助10
9秒前
cloud发布了新的文献求助30
9秒前
9秒前
10秒前
10秒前
11秒前
11秒前
jj发布了新的文献求助30
11秒前
wwwstt完成签到,获得积分10
11秒前
xhz发布了新的文献求助10
13秒前
英俊的铭应助Yeah采纳,获得10
13秒前
13秒前
CodeCraft应助MD_ed采纳,获得10
13秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481670
求助须知:如何正确求助?哪些是违规求助? 3071801
关于积分的说明 9123736
捐赠科研通 2763459
什么是DOI,文献DOI怎么找? 1516547
邀请新用户注册赠送积分活动 701593
科研通“疑难数据库(出版商)”最低求助积分说明 700453