Rolling Bearing Fault Diagnosis Based on Optimized VMD and SSAE

方位(导航) 断层(地质) 计算机科学 地质学 人工智能 地震学
作者
Baoxian Chang,Xing Zhao,Dawei Guo,Siyu Zhao,Jiyou Fei
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 130746-130762 被引量:3
标识
DOI:10.1109/access.2024.3386835
摘要

The monitoring and fault diagnosis of axle-box bearings in high-speed trains is crucial for ensuring safe train operations. The vibration signals of these bearings exhibit non-stationary and non-linear characteristics. To further enhance the accuracy of identifying rolling bearing faults, a fault diagnosis method is proposed. This method is based on the improved Dung Beetle Optimization (DBO) algorithm for optimizing Variational Mode Decomposition (VMD) combined with Stacked Sparse Autoencoder (SSAE). Firstly, the DBO algorithm is enhanced to improve its optimization precision and global optimization capability. It is then utilized for the adaptive selection of two parameters: the number of decomposition modes and the penalty factor in VMD. These improvements address issues such as mode mixing, signal loss, and excessive decomposition, which arise from poor parameter selection in the traditional VMD method. Subsequently, components of intrinsic mode functions (IMFs) that are highly correlated with the original signal are selected. The time-domain and frequency-domain features of these IMF components are used to construct the dataset. The feature set is then inputted into the deep machine learning model SSAE for training and testing. Through diagnostic experiments on various types and levels of rolling bearing faults, the model demonstrates a higher rate of fault diagnosis recognition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
闹海完成签到,获得积分10
1秒前
2秒前
nature2号完成签到 ,获得积分10
3秒前
Petrichor完成签到,获得积分10
3秒前
卷芽大王完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
万能图书馆应助xmy采纳,获得10
5秒前
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
729完成签到,获得积分10
7秒前
灵巧冰露发布了新的文献求助30
7秒前
lin完成签到,获得积分10
7秒前
9秒前
9秒前
10秒前
10秒前
陈陈陈发布了新的文献求助10
10秒前
11秒前
xiaoliu发布了新的文献求助10
11秒前
13秒前
13秒前
piggy发布了新的文献求助10
14秒前
14秒前
张北北完成签到,获得积分10
14秒前
liying发布了新的文献求助30
14秒前
昂莫达完成签到,获得积分10
14秒前
豆子发布了新的文献求助10
14秒前
LucyLi发布了新的文献求助10
15秒前
tcf发布了新的文献求助10
15秒前
jmy发布了新的文献求助30
15秒前
莱德完成签到,获得积分10
15秒前
16秒前
17秒前
傻呵呵发布了新的文献求助20
17秒前
17秒前
领导范儿应助淮山五加皮采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618686
求助须知:如何正确求助?哪些是违规求助? 4703697
关于积分的说明 14923247
捐赠科研通 4758321
什么是DOI,文献DOI怎么找? 2550231
邀请新用户注册赠送积分活动 1513010
关于科研通互助平台的介绍 1474379