亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SSGCL: Simple Social Recommendation with Graph Contrastive Learning

简单(哲学) 计算机科学 图形 自然语言处理 人工智能 理论计算机科学 认识论 哲学
作者
Zhihua Duan,Chun Wang,Wen-Ding Zhong
出处
期刊:Mathematics [MDPI AG]
卷期号:12 (7): 1107-1107 被引量:1
标识
DOI:10.3390/math12071107
摘要

As user–item interaction information is typically limited, collaborative filtering (CF)-based recommender systems often suffer from the data sparsity issue. To address this issue, recent recommender systems have turned to graph neural networks (GNNs) due to their superior performance in capturing high-order relationships. Furthermore, some of these GNN-based recommendation models also attempt to incorporate other information. They either extract self-supervised signals to mitigate the data sparsity problem or employ social information to assist with learning better representations under a social recommendation setting. However, only a few methods can take full advantage of these different aspects of information. Based on some testing, we believe most of these methods are complex and redundantly designed, which may lead to sub-optimal results. In this paper, we propose SSGCL, which is a recommendation system model that utilizes both social information and self-supervised information. We design a GNN-based propagation strategy that integrates social information with interest information in a simple yet effective way to learn user–item representations for recommendations. In addition, a specially designed contrastive learning module is employed to take advantage of the self-supervised signals for a better user–item representation distribution. The contrastive learning module is jointly optimized with the recommendation module to benefit the final recommendation result. Experiments on several benchmark data sets demonstrate the significant improvement in performance achieved by our model when compared with baseline models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咖啡续命完成签到 ,获得积分10
2秒前
3秒前
酷酷问夏完成签到,获得积分10
5秒前
19秒前
27秒前
雷家完成签到,获得积分10
30秒前
31秒前
天天快乐应助打地鼠工人采纳,获得10
32秒前
34秒前
Miraitowa发布了新的文献求助10
37秒前
42秒前
言辞完成签到,获得积分10
42秒前
情怀应助秋刀鱼不过期采纳,获得10
42秒前
王云云完成签到 ,获得积分10
43秒前
超级的代柔完成签到,获得积分20
48秒前
57秒前
1分钟前
花痴的骁完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
wyg1994发布了新的文献求助10
1分钟前
幽默尔蓉完成签到,获得积分10
1分钟前
卷心菜完成签到 ,获得积分10
1分钟前
幽默尔蓉发布了新的文献求助10
1分钟前
景辣条应助Flanker采纳,获得10
1分钟前
景辣条应助Rita采纳,获得10
1分钟前
1分钟前
hayk发布了新的文献求助10
1分钟前
wyg1994完成签到,获得积分10
1分钟前
1分钟前
Aliya完成签到 ,获得积分10
1分钟前
2分钟前
小马甲应助釉荼采纳,获得30
2分钟前
星落枝头发布了新的文献求助10
2分钟前
2分钟前
2分钟前
joseneo完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136993
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784040
捐赠科研通 2444012
什么是DOI,文献DOI怎么找? 1299609
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600989