SSGCL: Simple Social Recommendation with Graph Contrastive Learning

简单(哲学) 计算机科学 图形 自然语言处理 人工智能 理论计算机科学 认识论 哲学
作者
Zhihua Duan,Chun Wang,Wen-Ding Zhong
出处
期刊:Mathematics [MDPI AG]
卷期号:12 (7): 1107-1107 被引量:1
标识
DOI:10.3390/math12071107
摘要

As user–item interaction information is typically limited, collaborative filtering (CF)-based recommender systems often suffer from the data sparsity issue. To address this issue, recent recommender systems have turned to graph neural networks (GNNs) due to their superior performance in capturing high-order relationships. Furthermore, some of these GNN-based recommendation models also attempt to incorporate other information. They either extract self-supervised signals to mitigate the data sparsity problem or employ social information to assist with learning better representations under a social recommendation setting. However, only a few methods can take full advantage of these different aspects of information. Based on some testing, we believe most of these methods are complex and redundantly designed, which may lead to sub-optimal results. In this paper, we propose SSGCL, which is a recommendation system model that utilizes both social information and self-supervised information. We design a GNN-based propagation strategy that integrates social information with interest information in a simple yet effective way to learn user–item representations for recommendations. In addition, a specially designed contrastive learning module is employed to take advantage of the self-supervised signals for a better user–item representation distribution. The contrastive learning module is jointly optimized with the recommendation module to benefit the final recommendation result. Experiments on several benchmark data sets demonstrate the significant improvement in performance achieved by our model when compared with baseline models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柠檬不萌完成签到,获得积分20
1秒前
1秒前
123完成签到,获得积分10
2秒前
郑雨霏发布了新的文献求助10
2秒前
Mmmmmmm发布了新的文献求助10
3秒前
星辰大海应助hhh采纳,获得10
3秒前
3秒前
3秒前
tjxx发布了新的文献求助10
3秒前
共享精神应助Caroline采纳,获得10
3秒前
3秒前
要减肥的镜子完成签到,获得积分10
3秒前
Ava应助鳎mu采纳,获得10
4秒前
5秒前
5秒前
乐乐应助畅快的广山采纳,获得10
5秒前
爆米花应助机灵又蓝采纳,获得10
5秒前
害羞的靖荷完成签到,获得积分10
5秒前
5秒前
001完成签到,获得积分10
6秒前
6秒前
北辰南冥完成签到 ,获得积分10
6秒前
6秒前
英吉利25发布了新的文献求助10
6秒前
刘晓倩发布了新的文献求助10
7秒前
7秒前
搜集达人应助酷炫的夏云采纳,获得10
8秒前
顺利毕业完成签到,获得积分10
8秒前
pipi发布了新的文献求助10
9秒前
酷酷元风完成签到,获得积分10
9秒前
9秒前
Owen应助jinx采纳,获得10
10秒前
Joker发布了新的文献求助10
10秒前
10秒前
wwwww完成签到 ,获得积分10
11秒前
酷炫傲安发布了新的文献求助10
11秒前
浅晨发布了新的文献求助30
11秒前
11秒前
雍以菱发布了新的文献求助10
11秒前
angel完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
COATING AND DRYINGDEEECTSTroubleshooting Operating Problems 600
涂布技术与设备手册 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5569810
求助须知:如何正确求助?哪些是违规求助? 4655144
关于积分的说明 14710842
捐赠科研通 4596139
什么是DOI,文献DOI怎么找? 2522284
邀请新用户注册赠送积分活动 1493421
关于科研通互助平台的介绍 1464032