清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Comparing the performance of global, geographically weighted and ecologically weighted species distribution models for Scottish wildcats using GLM and Random Forest predictive modeling

随机森林 统计 广义线性模型 分布(数学) 生态学 地理 数学 环境科学 计量经济学 计算机科学 生物 人工智能 数学分析
作者
Samuel A. Cushman,Kerry Kilshaw,Richard D. Campbell,Żaneta Kaszta,Martin J. Gaywood,David W. Macdonald
出处
期刊:Ecological Modelling [Elsevier]
卷期号:492: 110691-110691 被引量:5
标识
DOI:10.1016/j.ecolmodel.2024.110691
摘要

Species distribution modeling has emerged as a foundational method to predict occurrence and suitability of species in relation to environmental variables to advance ecological understanding and guide conservation planning. Recent research, however, has shown that species-environmental relationships and habitat model predictions are often nonstationary in space, time and ecological context. This calls into question modeling approaches that assume a global, stationary ecological realized niche and use predictive modeling to describe it. This paper explores this issue by comparing the performance of predictive models for wildcat hybrid occurrence based on (1) global pooled data across individuals, (2) geographically weighted aggregation of individual models, (3) ecologically weighted aggregation of individual models, and (4) combinations of global, geographical and ecological weighting. Our study system included GPS telemetry data from 14 individual wildcat hybrids across Scotland. We developed predictive models both using Generalized Linear Models (GLM) and Random Forest machine learning to compare the performance of these differing algorithms and how they compare in stationary and nonstationary analyses. We validated the predicted models in four different ways. First, we used independent hold-out data from the 14 collared wildcat hybrids. Second, we used data from 8 additional GPS collared wildcat hybrids from a previous study that were not included in the training sample. Third, we used sightings data sent in by the public and researchers and validated by expert opinion. Fourth, we used data collected by camera trap surveys between 2012 – 2021 from various sources to produce a combined camera trap dataset showing where wildcats and wildcat hybrids had been detected. Our results show that validation using hold-out data from the individuals used to train the model provides highly biased assessment of true model performance in other locations, with Random Forest in particular appearing to perform exceptionally (and inaccurately) well when validated by data from the same individuals used to train the models. Very different results were obtained when the models were validated using independent data from the three other sources. Each of these three independent validation data sets gave a different result in terms of the best overall model. The average of independent validation across these three validation datasets suggested that the best overall model produced for potential wildcat occurrence and habitat suitability was obtained by an ensemble average of the global Generalized Linear Model (GLM) and Random Forest models with the ecologically weighted GLM and Random Forest models. This suggests that the debate over whether which of GLM vs machine learning approaches is superior or whether global vs aggregated nonstationary modeling is superior may be a false choice. The results presented here show that the best prediction applies a combination of all of these approaches in an ensemble modeling framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
摆渡人发布了新的文献求助10
25秒前
贝贝完成签到,获得积分0
28秒前
TIANccc完成签到 ,获得积分20
39秒前
52秒前
lan发布了新的文献求助10
58秒前
xyl_507完成签到 ,获得积分0
1分钟前
catalyst326发布了新的文献求助10
1分钟前
科研狗完成签到 ,获得积分10
2分钟前
白白嫩嫩完成签到,获得积分10
2分钟前
lan完成签到,获得积分10
2分钟前
堇笙vv完成签到,获得积分0
2分钟前
study00122完成签到,获得积分10
2分钟前
不能吃太饱完成签到 ,获得积分10
3分钟前
wei完成签到 ,获得积分0
3分钟前
fogsea完成签到,获得积分0
3分钟前
...完成签到 ,获得积分10
3分钟前
CC完成签到,获得积分0
3分钟前
纯真的冰蓝完成签到 ,获得积分10
3分钟前
cai白白完成签到,获得积分0
4分钟前
脆饼同学完成签到 ,获得积分10
4分钟前
等待的花生完成签到,获得积分10
4分钟前
danli完成签到 ,获得积分10
4分钟前
星辰大海应助想不明白采纳,获得10
4分钟前
Tong完成签到,获得积分0
4分钟前
amar完成签到 ,获得积分0
4分钟前
wx1完成签到 ,获得积分0
5分钟前
5分钟前
想不明白发布了新的文献求助10
5分钟前
想不明白完成签到,获得积分20
6分钟前
wp4455777完成签到,获得积分10
6分钟前
六等于三二一完成签到 ,获得积分10
6分钟前
festum完成签到,获得积分10
7分钟前
DJ_Tokyo完成签到,获得积分10
7分钟前
小石榴爸爸完成签到 ,获得积分10
7分钟前
摆渡人发布了新的文献求助10
7分钟前
摆渡人完成签到,获得积分10
7分钟前
WW应助科研通管家采纳,获得10
7分钟前
小石榴的爸爸完成签到 ,获得积分10
7分钟前
yujie完成签到 ,获得积分10
7分钟前
搞怪的流沙完成签到 ,获得积分10
7分钟前
高分求助中
System in Systemic Functional Linguistics A System-based Theory of Language 1000
The Data Economy: Tools and Applications 1000
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
Academia de Coimbra: 1537-1990: história, praxe, boémia e estudo, partidas e piadas, organismos académicos 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3117525
求助须知:如何正确求助?哪些是违规求助? 2767630
关于积分的说明 7691698
捐赠科研通 2422995
什么是DOI,文献DOI怎么找? 1286570
科研通“疑难数据库(出版商)”最低求助积分说明 620426
版权声明 599868