清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Comparing the performance of global, geographically weighted and ecologically weighted species distribution models for Scottish wildcats using GLM and Random Forest predictive modeling

随机森林 统计 广义线性模型 分布(数学) 生态学 地理 数学 环境科学 计量经济学 计算机科学 生物 人工智能 数学分析
作者
Samuel A. Cushman,Kerry Kilshaw,Richard D. Campbell,Żaneta Kaszta,Martin J. Gaywood,David W. Macdonald
出处
期刊:Ecological Modelling [Elsevier BV]
卷期号:492: 110691-110691 被引量:5
标识
DOI:10.1016/j.ecolmodel.2024.110691
摘要

Species distribution modeling has emerged as a foundational method to predict occurrence and suitability of species in relation to environmental variables to advance ecological understanding and guide conservation planning. Recent research, however, has shown that species-environmental relationships and habitat model predictions are often nonstationary in space, time and ecological context. This calls into question modeling approaches that assume a global, stationary ecological realized niche and use predictive modeling to describe it. This paper explores this issue by comparing the performance of predictive models for wildcat hybrid occurrence based on (1) global pooled data across individuals, (2) geographically weighted aggregation of individual models, (3) ecologically weighted aggregation of individual models, and (4) combinations of global, geographical and ecological weighting. Our study system included GPS telemetry data from 14 individual wildcat hybrids across Scotland. We developed predictive models both using Generalized Linear Models (GLM) and Random Forest machine learning to compare the performance of these differing algorithms and how they compare in stationary and nonstationary analyses. We validated the predicted models in four different ways. First, we used independent hold-out data from the 14 collared wildcat hybrids. Second, we used data from 8 additional GPS collared wildcat hybrids from a previous study that were not included in the training sample. Third, we used sightings data sent in by the public and researchers and validated by expert opinion. Fourth, we used data collected by camera trap surveys between 2012 – 2021 from various sources to produce a combined camera trap dataset showing where wildcats and wildcat hybrids had been detected. Our results show that validation using hold-out data from the individuals used to train the model provides highly biased assessment of true model performance in other locations, with Random Forest in particular appearing to perform exceptionally (and inaccurately) well when validated by data from the same individuals used to train the models. Very different results were obtained when the models were validated using independent data from the three other sources. Each of these three independent validation data sets gave a different result in terms of the best overall model. The average of independent validation across these three validation datasets suggested that the best overall model produced for potential wildcat occurrence and habitat suitability was obtained by an ensemble average of the global Generalized Linear Model (GLM) and Random Forest models with the ecologically weighted GLM and Random Forest models. This suggests that the debate over whether which of GLM vs machine learning approaches is superior or whether global vs aggregated nonstationary modeling is superior may be a false choice. The results presented here show that the best prediction applies a combination of all of these approaches in an ensemble modeling framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毛毛弟完成签到 ,获得积分10
刚刚
嫣儿完成签到,获得积分10
1秒前
3秒前
奋斗的妙海完成签到 ,获得积分0
13秒前
CQ完成签到 ,获得积分10
17秒前
29秒前
32秒前
姚芭蕉完成签到 ,获得积分0
36秒前
32429606完成签到 ,获得积分10
50秒前
xinjiasuki完成签到 ,获得积分10
57秒前
韧迹完成签到 ,获得积分0
58秒前
平常日记本完成签到 ,获得积分10
59秒前
1分钟前
闪闪的谷梦完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
airtermis完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
ASL完成签到 ,获得积分10
1分钟前
常有李完成签到,获得积分10
1分钟前
有川洋一完成签到 ,获得积分10
1分钟前
1分钟前
gmc完成签到 ,获得积分10
2分钟前
herpes完成签到 ,获得积分0
2分钟前
汉堡包应助伯赏尔云采纳,获得10
2分钟前
哈基米德应助贝妮戴塔采纳,获得20
2分钟前
拼搏的羊青完成签到 ,获得积分10
2分钟前
天将明完成签到 ,获得积分10
2分钟前
丘比特应助薛言采纳,获得10
2分钟前
Ava应助薛言采纳,获得10
2分钟前
刻苦的新烟完成签到 ,获得积分10
2分钟前
2分钟前
清风完成签到 ,获得积分10
2分钟前
注水萝卜完成签到 ,获得积分10
2分钟前
王波完成签到 ,获得积分10
2分钟前
widesky777完成签到 ,获得积分0
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
个性松完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015520
求助须知:如何正确求助?哪些是违规求助? 3555453
关于积分的说明 11318050
捐赠科研通 3288665
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812012