亲核细胞
选择性
配体(生物化学)
单独一对
密度泛函理论
拉曼光谱
表面增强拉曼光谱
化学
原子轨道
硫醇
光化学
计算化学
电极
电化学
受体
分子
有机化学
生物化学
催化作用
拉曼散射
物理化学
物理
量子力学
电子
光学
作者
Erfan Shirzadi,Jin Qiu,Ali Shayesteh Zeraati,Roham Dorakhan,Tiago J. Goncalves,Jehad Abed,Byoung‐Hoon Lee,Armin Sedighian Rasouli,Joshua Wicks,Jinqiang Zhang,Pengfei Ou,Victor Boureau,Sung-Jin Park,Weiyan Ni,Geonhui Lee,Cong Tian,Débora Motta Meira,David Sinton,Samira Siahrostami,Edward H. Sargent
标识
DOI:10.1038/s41467-024-47319-z
摘要
Abstract Improving the kinetics and selectivity of CO 2 /CO electroreduction to valuable multi-carbon products is a challenge for science and is a requirement for practical relevance. Here we develop a thiol-modified surface ligand strategy that promotes electrochemical CO-to-acetate. We explore a picture wherein nucleophilic interaction between the lone pairs of sulfur and the empty orbitals of reaction intermediates contributes to making the acetate pathway more energetically accessible. Density functional theory calculations and Raman spectroscopy suggest a mechanism where the nucleophilic interaction increases the sp 2 hybridization of CO (ad) , facilitating the rate-determining step, CO* to (CHO)*. We find that the ligands stabilize the (HOOC–CH 2 )* intermediate, a key intermediate in the acetate pathway. In-situ Raman spectroscopy shows shifts in C–O, Cu–C, and C–S vibrational frequencies that agree with a picture of surface ligand-intermediate interactions. A Faradaic efficiency of 70% is obtained on optimized thiol-capped Cu catalysts, with onset potentials 100 mV lower than in the case of reference Cu catalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI