Advancing Bone-Targeted Drug Delivery: Leveraging Biological Factors and Nanoparticle Designs to Improve Therapeutic Efficacy

体内 体内分布 骨愈合 药物输送 配体(生物化学) 骨不连 材料科学 生物物理学 骨质疏松症 化学 体外 药理学 生物化学 纳米技术 内科学 医学 受体 生物 外科 生物技术
作者
Baixue Xiao,Marian A. Ackun‐Farmmer,Emmanuela Adjei‐Sowah,Yuxuan Liu,Indika Chandrasiri,Danielle S. W. Benoit
出处
期刊:ACS Biomaterials Science & Engineering [American Chemical Society]
卷期号:10 (4): 2224-2234 被引量:3
标识
DOI:10.1021/acsbiomaterials.3c01022
摘要

Designing targeted drug delivery systems to effectively treat bone diseases ranging from osteoporosis to nonunion bone defects remains a significant challenge. Previously, nanoparticles (NPs) self-assembled from diblock copolymers of poly(styrene-alt-maleic anhydride)-b-poly(styrene) (PSMA-b-PS) delivering a Wnt agonist were shown to effectively target bone and improve healing via the introduction of a peptide with high affinity to tartrate-resistant acid phosphatase (TRAP), an enzyme deposited by the osteoclasts during bone remodeling. Despite these promising results, the underlying biological factors governing targeting and subsequent drug delivery system (DDS) design parameters have not been examined to enable the rational design to improve bone selectivity. Therefore, this work investigated the effect of target ligand density, the treatment window after injury, specificity of TRAP binding peptide (TBP), the extent of TRAP deposition, and underlying genetic factors (e.g., mouse strain differences) on TBP-NP targeting. Data based on in vitro binding studies and in vivo biodistribution analyses using a murine femoral fracture model suggest that TBP-NP-TRAP interactions and TBP-NP bone accumulation were ligand-density-dependent; in vitro, TRAP affinity was correlated with ligand density up to the maximum of 200,000 TBP ligands/NP, while NPs with 80,000 TBP ligands showed 2-fold increase in fracture accumulation at day 21 post injury compared with that of untargeted or scrambled controls. While fracture accumulation exhibited similar trends when injected at day 3 compared to that at day 21 postfracture, there were no significant differences observed between TBP-functionalized and control NPs, possibly due to saturation of TRAP by NPs at day 3. Leveraging a calcium-depletion diet, TRAP deposition and TBP-NP bone accumulation were positively correlated, confirming that TRAP-TBP binding leads to TBP-NP bone accumulation in vivo. Furthermore, TBP-NP exhibited similar bone accumulation in both C57BL/6 and BALB/c mouse strains versus control NPs, suggesting the broad applicability of TBP-NP regardless of the underlying genetic differences. These studies provide insight into TBP-NP design, mechanism, and therapeutic windows, which inform NP design and treatment strategies for fractures and other bone-associated diseases that leverage TRAP, such as marrow-related hematologic diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jonghuang完成签到,获得积分10
1秒前
飞行模式发布了新的文献求助10
1秒前
1秒前
郑亚铎发布了新的文献求助10
2秒前
mighu完成签到,获得积分10
3秒前
hesu发布了新的文献求助10
4秒前
4秒前
大个应助technician采纳,获得10
4秒前
粒粒发布了新的文献求助10
5秒前
6秒前
凉冰发布了新的文献求助10
6秒前
6秒前
Orange应助哈哈哈采纳,获得10
7秒前
孙刚完成签到 ,获得积分10
8秒前
ysm完成签到,获得积分10
8秒前
臻灏完成签到,获得积分10
8秒前
NexusExplorer应助不想看文献采纳,获得10
8秒前
小二郎应助ALITTLE采纳,获得10
9秒前
小乔发布了新的文献求助10
10秒前
旺仔完成签到 ,获得积分10
12秒前
12秒前
啦啦完成签到 ,获得积分10
12秒前
达叔发布了新的文献求助10
16秒前
科研通AI5应助小小科研人采纳,获得10
16秒前
ding应助小高采纳,获得10
17秒前
wesley发布了新的文献求助100
17秒前
18秒前
19秒前
19秒前
光亮妙之完成签到,获得积分10
20秒前
新世界的蜗牛完成签到,获得积分10
20秒前
比白618完成签到,获得积分10
22秒前
wshwx驳回了田様应助
23秒前
23秒前
早爹完成签到 ,获得积分10
23秒前
24秒前
Jasper应助奋斗映寒采纳,获得10
24秒前
王淇茜发布了新的文献求助10
24秒前
天天发布了新的文献求助10
25秒前
猜猜完成签到,获得积分10
26秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769651
求助须知:如何正确求助?哪些是违规求助? 3314720
关于积分的说明 10173463
捐赠科研通 3030075
什么是DOI,文献DOI怎么找? 1662585
邀请新用户注册赠送积分活动 795040
科研通“疑难数据库(出版商)”最低求助积分说明 756519