High-speed laser centerline extraction and heterogeneous measurement architectures for low-cost hardware

现场可编程门阵列 计算机科学 加速 可靠性(半导体) 过程(计算) 实时计算 计算机硬件 结构光 硬件体系结构 功率(物理) 人工智能 软件 并行计算 物理 量子力学 程序设计语言 操作系统
作者
Jianer Wang,Lei Jin,Junheng Li,Ke Xu
出处
期刊:Measurement [Elsevier]
卷期号:231: 114580-114580
标识
DOI:10.1016/j.measurement.2024.114580
摘要

Due to its real-time efficiency, stability, and reliability, structured light 3D measurement is widely used in measuring surface quality and manufacturing accuracy of industrial products. With the structured light measurement system's slow acquisition speed and low efficiency, it is difficult to meet the needs of online real-time detection, resulting in sparse 3D contour data and loss of details. To improve the algorithm's running speed and balance hardware resource consumption, a structured light extraction algorithm adapted to hardware acceleration is proposed, which executes the three low-coupling computational modules at eight-pixel parallel speed and in a pipelined manner. In order to further reduce the overall computational efficiency and deployment cost of high-speed structured light measurement tasks, an FPGA camera architecture with parallel acquisition and processing is designed, and the FPGA camera is cooperated with the CPU to form a more efficient heterogeneous measurement system. For samples of different materials and shapes, the standard deviation of sub-pixel coordinates extracted is less than 0.65. With this architecture, it is possible to process video stream with one million pixels at 500FPS, and the power consumption is 2.566w. Experimental results of measuring blocks and steel pipes show that the measurement error is below 0.15 mm. The proposed algorithm and heterogeneous processing measurement architecture are applicable in engineering, especially for high-speed real-time 3D measurement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懵懂的子骞完成签到 ,获得积分10
刚刚
mammoth发布了新的文献求助40
刚刚
刚刚
英俊的铭应助Chang采纳,获得10
1秒前
1秒前
1秒前
kk子完成签到,获得积分10
2秒前
夏橪发布了新的文献求助10
2秒前
JamesPei应助lunan采纳,获得10
3秒前
传奇3应助qing采纳,获得10
3秒前
卫尔摩斯完成签到,获得积分10
4秒前
4秒前
4秒前
沉默牛排发布了新的文献求助10
4秒前
科研通AI5应助独特微笑采纳,获得10
4秒前
5秒前
5秒前
碧玉墨绿完成签到,获得积分10
5秒前
xiaoma完成签到,获得积分10
5秒前
6秒前
潇洒的擎苍完成签到,获得积分10
6秒前
刘晓纳发布了新的文献求助10
6秒前
晴子发布了新的文献求助10
6秒前
洛鸢发布了新的文献求助10
7秒前
立马毕业完成签到,获得积分10
7秒前
卫尔摩斯发布了新的文献求助10
7秒前
BINBIN完成签到 ,获得积分10
7秒前
hfgeyt完成签到,获得积分10
8秒前
sakurai应助背后的诺言采纳,获得10
8秒前
湘华发布了新的文献求助10
9秒前
Jenny应助lan采纳,获得10
9秒前
单薄的飞松完成签到 ,获得积分10
9秒前
醒醒发布了新的文献求助10
9秒前
10秒前
恨安完成签到,获得积分10
10秒前
jijahui发布了新的文献求助30
10秒前
南瓜咸杏发布了新的文献求助30
10秒前
11秒前
调研昵称发布了新的文献求助50
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762