Blockchain-Based Federated Learning With Enhanced Privacy and Security Using Homomorphic Encryption and Reputation

同态加密 计算机科学 计算机安全 声誉 块链 加密 信息隐私 互联网隐私 法学 政治学
作者
Ruizhe Yang,Tonghui Zhao,F. Richard Yu,Meng Li,Dajun Zhang,Xuehui Zhao
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (12): 21674-21688 被引量:7
标识
DOI:10.1109/jiot.2024.3379395
摘要

Federated learning, leveraging distributed data from multiple nodes to train a common model, allows for the use of more data to improve the model while also protecting the privacy of original data. However, challenges still exist in ensuring privacy and security within the interactions. To address these issues, this paper proposes a federated learning approach that incorporates blockchain, homomorphic encryption, and reputation. Using homomorphic encryption, edge nodes possessing local data can complete the training of ciphertext models, with their contributions to the aggregation being evaluated by a reputation mechanism. Both models and reputations are documented and verified on the blockchain through consensus process, which then determines the rewards based on the incentive mechanism. This approach not only incentivizes participation in training, but also ensures the privacy of data and models through encryption. Additionally, it addresses security risks associated with both data and network attacks, ultimately leading to a highly accurate trained model. To enhance the efficiency of learning and the performance of the model, a joint adaptive aggregation and resource optimization algorithm is introduced. Finally, simulations and analyses demonstrate that the proposed scheme enhances learning accuracy while maintaining privacy and security.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
2秒前
杨知意发布了新的文献求助10
4秒前
4秒前
科研通AI2S应助赤木采纳,获得10
5秒前
笑一笑完成签到,获得积分10
5秒前
5秒前
6秒前
英勇碧空发布了新的文献求助10
7秒前
sdsd发布了新的文献求助10
8秒前
8秒前
星辰大海应助孔院采纳,获得10
9秒前
吃大肉完成签到,获得积分10
9秒前
宁采臣发布了新的文献求助10
9秒前
田様应助xiyue采纳,获得10
9秒前
10秒前
852应助刘xiansheng采纳,获得10
11秒前
11秒前
12秒前
吉良吉影完成签到,获得积分20
12秒前
研友_La17wL完成签到,获得积分10
12秒前
聂学雨发布了新的文献求助10
12秒前
卡卡龍特发布了新的文献求助30
13秒前
乾乾完成签到,获得积分10
13秒前
14秒前
14秒前
俊逸的剑愁完成签到,获得积分10
15秒前
15秒前
慕青应助种花家的狗狗采纳,获得10
16秒前
16秒前
要努力坚持啊完成签到,获得积分10
16秒前
科研通AI2S应助zjq采纳,获得10
16秒前
18秒前
18秒前
qqym发布了新的文献求助10
19秒前
19秒前
霉铭子发布了新的文献求助20
19秒前
meng发布了新的文献求助10
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135616
求助须知:如何正确求助?哪些是违规求助? 2786482
关于积分的说明 7777675
捐赠科研通 2442483
什么是DOI,文献DOI怎么找? 1298583
科研通“疑难数据库(出版商)”最低求助积分说明 625193
版权声明 600847