羧甲基纤维素
自愈水凝胶
没食子酸
化学
伤口愈合
儿茶酚
乙二胺
化学工程
高分子化学
材料科学
抗氧化剂
有机化学
工程类
生物
钠
免疫学
作者
Yongyan Yang,Ying Ma,Meiliang Wu,Xueping Wang,Yuan Zhao,Shuangling Zhong,Yan Gao,Xuejun Cui
标识
DOI:10.1016/j.ijbiomac.2024.131626
摘要
Self-healing hydrogel is a promising soft material for applications in wound dressings, drug delivery, tissue engineering, biomimetic electronic skin, and wearable electronic devices. However, it is a challenge to fabricate the self-healing hydrogels without external stimuli. Inspired by mussel, the metal-catechol complexes were introduced into the hydrogel systems to prepare the mussel-inspired hydrogels by regulating the gelation kinetics of Fe3+ crosslinkers with gallic acid (GA) in this research. The amine-functionalized carboxymethyl cellulose (CMC) was grafted with GA and then chelated with Fe3+ to form a multi-response system. The crosslinking of carboxymethyl cellulose-ethylenediamine-gallic acid (CEG) hydrogel was controlled by adjusting the pH to affect the iron coordination chemistry, which could enhance the self-healing properties and mechanical strength of hydrogels. In addition, the CEG hydrogel exhibited great antibacterial and antioxidant properties. And the CEG hydrogel could strongly adhere to the skin tissue. The adhesion strength of CEG hydrogel on pigskin was 11.44 kPa, which is higher than that of commercial wound dressings (~5 kPa). Moreover, the thixotropy of the CEG hydrogel was confirmed with rheological test. In summary, it has great potential in the application field of wound dressing.
科研通智能强力驱动
Strongly Powered by AbleSci AI