已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Monolithically Defined Wireless Fully Implantable Nervous System Interfaces

数码产品 计算机科学 可伸缩电子设备 互连 电源管理 能量收集 可扩展性 材料科学 电气工程 功率(物理) 工程类 电信 物理 量子力学 数据库
作者
Philipp Gutruf
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:57 (9): 1275-1286 被引量:2
标识
DOI:10.1021/acs.accounts.4c00013
摘要

ConspectusEvolution of implantable neural interfaces is critical in addressing the challenges in understanding the fundamental working principles and therapeutic applications for central and peripheral nervous systems. Traditional approaches utilizing hermetically sealed, rigid electronics and detached electrodes face challenges in power supply, encapsulation, channel count, dispersed application location, and modality. Employing thin-film, wirelessly powered devices is promising to expand capabilities. Devices that forego bulky power supplies, favoring a configuration where electronics are integrated directly onto thin films, reduce displacement volumes for seamless, fully implantable interfaces with high energy availability and soft mechanics to conform to the neuronal target. We discuss 3 device architectures: (1) Highly miniaturized devices that merge electronics and neural interfaces into a single, injectable format; (2) Interfaces that consolidate power, computation, and neural connectivity on a thin sheet applied directly to the target area; (3) A spatially dislocated approach where power and computation are situated subdermally, connected via a thin interconnect to the neural interface.Each has advantages and constraints in terms of implantation invasiveness, power capturing efficiency, and directional sensitivity of power delivery. In powering these devices, near-field power delivery emerges as the most implemented technique. Key parameters are size and volume of primary and secondary antennas, which determine coupling efficiency and power delivery. Based on application requirements, ranging from small to large animal models, subjects require system level designs. Material strategies play a crucial role; monolithic designs, with materials like polyimide substrates, enable scalability with high performance. This contrasts with established hermetic encapsulation approaches that use a stainless steel or titanium box with passthroughs that result in large tissue displacements and prohibit intimate integration with target organ systems. Encapsulation, particularly with parylene, enables longevity and effectiveness; more research is needed to enable human lifetime operation. Implant-to-ambient device communication, focusing on strategies compatible with well-established standards and off-the-shelf electronics, is discussed with the goal of enabling seamless system integration, reliability, and scalability. The interface with the central nervous system is explored through various wireless, battery-free devices capable of both stimulation (electrical and optogenetic) and recording (photometric and electrochemical). These devices show advanced capabilities for chronic studies and insights into neural dynamics. In the peripheral nervous system, stimulation devices for applications, such as spinal and muscle stimulation, are discussed. The challenges lie in the mechanical and electrochemical durability. Examples that successfully navigate these challenges offer solutions for chronic studies in this domain. The potential of wireless, fully implantable nervous system interfaces using near field resonant power transfer is characterized by monolithically defined device architecture, providing a significant leap toward seamless access to the central and peripheral nervous systems. New avenues for research and therapeutic applications supporting a multimodal and multisite approach to neuromodulation with a high degree of connectivity and a holistic approach toward deciphering and supplementing the nervous system may enable recovery and treatment of injury and chronic disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Splaink完成签到 ,获得积分10
刚刚
很傻的狗完成签到,获得积分10
1秒前
肉丸完成签到 ,获得积分10
3秒前
4秒前
6秒前
水晶鞋完成签到 ,获得积分10
6秒前
6秒前
469024195完成签到 ,获得积分10
8秒前
爱学习的瑞瑞子完成签到 ,获得积分10
8秒前
asd发布了新的文献求助10
10秒前
圆彰七大完成签到 ,获得积分10
10秒前
芥子完成签到 ,获得积分10
12秒前
ling361完成签到,获得积分10
13秒前
何不食肉糜完成签到 ,获得积分10
13秒前
外向如冬完成签到 ,获得积分10
13秒前
迷路的台灯完成签到 ,获得积分10
14秒前
育三杯清栀完成签到 ,获得积分10
15秒前
15秒前
ag发布了新的文献求助10
16秒前
彭仲康完成签到 ,获得积分10
16秒前
apollo3232完成签到,获得积分10
17秒前
123完成签到 ,获得积分10
17秒前
18秒前
媛媛发布了新的文献求助10
20秒前
21秒前
武勇发布了新的文献求助10
23秒前
ag完成签到,获得积分10
24秒前
yuezhi发布了新的文献求助10
25秒前
25秒前
小二郎应助cmz采纳,获得30
25秒前
调皮飞雪发布了新的文献求助10
25秒前
丘比特应助BBA采纳,获得10
26秒前
26秒前
DChen完成签到 ,获得积分10
27秒前
keyanfeiwu完成签到 ,获得积分10
28秒前
31秒前
psyYang完成签到,获得积分10
31秒前
zhu96114748发布了新的文献求助10
31秒前
李心雨发布了新的文献求助10
33秒前
33秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310983
求助须知:如何正确求助?哪些是违规求助? 2943808
关于积分的说明 8516466
捐赠科研通 2619086
什么是DOI,文献DOI怎么找? 1432020
科研通“疑难数据库(出版商)”最低求助积分说明 664484
邀请新用户注册赠送积分活动 649782