亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning-based virtual screening of multi-target anti-obesity compounds from medicinal and edible plants: A combined in silico and in vitro study

虚拟筛选 生物信息学 脂肪酶 化学 餐后 安普克 对接(动物) 体外 机器学习 生物化学 IC50型 激酶 计算生物学 蛋白激酶A 生物技术 生物 计算机科学 胰岛素 药物发现 医学 基因 护理部
作者
Xincheng Zhou,Jian Ni,Weiben Ge,Xinyue Wang,Yubing Li,Hongxin Wang,Chaoyang Ma
出处
期刊:Food bioscience [Elsevier]
卷期号:59: 104077-104077 被引量:2
标识
DOI:10.1016/j.fbio.2024.104077
摘要

In response to the limited effectiveness of existing weight loss food products, we sought to apply machine learning-based virtual screening methods to identify potential anti-obesity functional compounds from medicinal and edible plants and validate their in vitro activities. Firstly, we construct and evaluate the machine learning (ML) screening models using Multilayer Perceptron (MLP) and Random Forest (RF) algorithms. The receiver operating characteristic (ROC) curve demonstrates the high accuracy of MLP and RF models in screening for obese-related targets PL (pancreatic lipase) and AMPK (Adenosine 5'-monophosphate activated protein kinase). Subsequently, the tested ML models are employed to screen the constructed database, and Gypenoside LXVI (GYP) and alisol-b-23-acetate (ALI) are identified as compounds exhibiting favorable activity against both targets. The hit compounds are tested for their impact on lipase activity and lipid accumulation. The test results show that GYP and ALI have favorable inhibitory effects on pancreatic lipase (PL), with IC50 of 359.7 and 433.8 μg/mL. Furthermore, both GYP and ALI significantly reduced cellular lipid accumulation by 72.89% and 79.01% with the concentration increase to 40 μg/mL. The molecular docking results indicate that GYP and ALI can interact with several amino acid residues on the two target proteins, thereby affecting the activity of the target proteins. In conclusion, GYP and ALI can prevent and alleviate obesity by inhibiting PL activity and regulating AMPK signaling factors. We innovatively applied virtual screening based on ML to discover functional factors in food for anti-obesity purposes. This novel computational screening technique holds significant potential in the development of dietary supplements to combat obesity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lwb0826完成签到 ,获得积分10
3秒前
佳佳文发布了新的文献求助10
8秒前
8秒前
断罪发布了新的文献求助10
12秒前
anioscal完成签到,获得积分10
16秒前
NexusExplorer应助yuan采纳,获得10
17秒前
美罗培南完成签到,获得积分10
19秒前
断罪完成签到,获得积分10
20秒前
21秒前
佳佳文完成签到,获得积分20
21秒前
liberation完成签到 ,获得积分10
21秒前
22秒前
胖萱子发布了新的文献求助10
24秒前
24秒前
abc完成签到 ,获得积分10
25秒前
兴奋元冬完成签到 ,获得积分10
27秒前
zho发布了新的文献求助10
28秒前
王磊发布了新的文献求助10
29秒前
orixero应助vvv采纳,获得10
35秒前
hawaii66完成签到 ,获得积分10
37秒前
领导范儿应助好汉采纳,获得30
46秒前
zxt完成签到,获得积分10
51秒前
胖萱子完成签到,获得积分20
55秒前
SeasonRain完成签到,获得积分10
1分钟前
希望天下0贩的0应助daiV采纳,获得10
1分钟前
范丞丞完成签到 ,获得积分10
1分钟前
1分钟前
orixero应助英俊的凌旋采纳,获得10
1分钟前
VDC应助科研通管家采纳,获得30
1分钟前
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
VDC应助科研通管家采纳,获得30
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
sutharsons应助科研通管家采纳,获得80
1分钟前
VDC应助科研通管家采纳,获得30
1分钟前
sutharsons应助清爽的冬寒采纳,获得20
1分钟前
1分钟前
vvv发布了新的文献求助10
1分钟前
单身的钧完成签到,获得积分10
1分钟前
Huang波完成签到,获得积分10
1分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3388338
求助须知:如何正确求助?哪些是违规求助? 3000757
关于积分的说明 8793484
捐赠科研通 2686820
什么是DOI,文献DOI怎么找? 1471861
科研通“疑难数据库(出版商)”最低求助积分说明 680653
邀请新用户注册赠送积分活动 673298