Reliable federated learning based on dual-reputation reverse auction mechanism in Internet of Things

计算机科学 声誉 信誉制度 计算机安全 激励 机器学习 人工智能 对偶(语法数字) 过程(计算) 质量(理念) 基线(sea) 操作系统 地质学 海洋学 微观经济学 经济 社会学 认识论 文学类 哲学 社会科学 艺术
作者
Y. A. Tang,Yongquan Liang,Yang Liu,Jinquan Zhang,Lina Ni,Liang Qi
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:156: 269-284 被引量:10
标识
DOI:10.1016/j.future.2024.03.019
摘要

Federated learning, a promising distributed machine learning paradigm, has been used in various Internet of Things (IoT) environments to solve isolated data island issues and protect data privacy. However, since the central server in federated learning cannot detect the local training process of the client, it is vulnerable to adversarial attacks against its security and privacy by malicious clients during the training process. To address this problem, this work proposes a federated learning system model based on dual-reputation reverse auction in IoT. Specifically, due to resource constraints, not all clients participate in the federated learning process, so we propose the reputation-bid ratio based greedy half-splitting algorithm to select some clients to participate in the federated learning, which can guarantee that each client has the chance to be selected while selecting as many honest and high-quality clients as possible. Then, we propose an adaptive dropout aggregation method based on a training quality score, which can effectively defend against malicious workers' attacks. After the completion of federated learning, we put forward a subjective evaluation incentive mechanism based on a second reputation to realize the fair incentive. Furthermore, we store and manage reputations through blockchain in our model to ensure their availability. Theoretical analysis deduces the complexity and security of our proposed model. Finally, simulation results indicate that our proposed model can achieve the highest accuracy across all test datasets compared to the baseline. Particularly, on the CIFAR10 dataset, the accuracy of our proposed model surpasses the baseline by 5% to 30%. In responding to sudden attacks initiated by normally participating workers, our model exhibits the fastest reaction time, with accuracy surpassing the baseline by 8% to 40%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助缄默采纳,获得10
刚刚
Jasper应助Getlogger采纳,获得10
刚刚
嘟嘟发布了新的文献求助10
刚刚
刚刚
1秒前
尔玉完成签到,获得积分10
1秒前
yxc完成签到,获得积分10
1秒前
xuex1发布了新的文献求助10
1秒前
Cina发布了新的文献求助50
1秒前
ssxw完成签到,获得积分10
1秒前
柚子完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
4秒前
albert完成签到 ,获得积分10
4秒前
5秒前
霸气的人生关注了科研通微信公众号
5秒前
laoben给laoben的求助进行了留言
6秒前
深情安青应助zhihui采纳,获得10
6秒前
酷酷珠发布了新的文献求助10
6秒前
一只小锦李完成签到 ,获得积分10
6秒前
PlanB应助LLLLLL采纳,获得10
6秒前
6秒前
不安寄容完成签到,获得积分10
7秒前
7秒前
7秒前
zdnhri发布了新的文献求助10
7秒前
Nakyseo完成签到,获得积分10
8秒前
kkdsseed发布了新的文献求助10
8秒前
搜集达人应助雪白巨人采纳,获得10
9秒前
法外潮湿宝贝完成签到 ,获得积分10
9秒前
周周周周周周完成签到,获得积分10
9秒前
仁清发布了新的文献求助30
9秒前
9秒前
Zzzooo发布了新的文献求助10
10秒前
沧海一声笑完成签到,获得积分10
10秒前
momo发布了新的文献求助10
10秒前
10秒前
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
《Undergraduate Research & the Academic Librarian: Case Studies and Best Practices, Volume 2》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299335
求助须知:如何正确求助?哪些是违规求助? 2934244
关于积分的说明 8468073
捐赠科研通 2607711
什么是DOI,文献DOI怎么找? 1423837
科研通“疑难数据库(出版商)”最低求助积分说明 661724
邀请新用户注册赠送积分活动 645397