Reliable federated learning based on dual-reputation reverse auction mechanism in Internet of Things

计算机科学 声誉 信誉制度 计算机安全 激励 机器学习 人工智能 对偶(语法数字) 过程(计算) 质量(理念) 基线(sea) 操作系统 地质学 海洋学 微观经济学 经济 社会学 认识论 文学类 哲学 社会科学 艺术
作者
Y. A. Tang,Yongquan Liang,Yang Liu,Jinquan Zhang,Lina Ni,Liang Qi
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:156: 269-284 被引量:14
标识
DOI:10.1016/j.future.2024.03.019
摘要

Federated learning, a promising distributed machine learning paradigm, has been used in various Internet of Things (IoT) environments to solve isolated data island issues and protect data privacy. However, since the central server in federated learning cannot detect the local training process of the client, it is vulnerable to adversarial attacks against its security and privacy by malicious clients during the training process. To address this problem, this work proposes a federated learning system model based on dual-reputation reverse auction in IoT. Specifically, due to resource constraints, not all clients participate in the federated learning process, so we propose the reputation-bid ratio based greedy half-splitting algorithm to select some clients to participate in the federated learning, which can guarantee that each client has the chance to be selected while selecting as many honest and high-quality clients as possible. Then, we propose an adaptive dropout aggregation method based on a training quality score, which can effectively defend against malicious workers' attacks. After the completion of federated learning, we put forward a subjective evaluation incentive mechanism based on a second reputation to realize the fair incentive. Furthermore, we store and manage reputations through blockchain in our model to ensure their availability. Theoretical analysis deduces the complexity and security of our proposed model. Finally, simulation results indicate that our proposed model can achieve the highest accuracy across all test datasets compared to the baseline. Particularly, on the CIFAR10 dataset, the accuracy of our proposed model surpasses the baseline by 5% to 30%. In responding to sudden attacks initiated by normally participating workers, our model exhibits the fastest reaction time, with accuracy surpassing the baseline by 8% to 40%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bosco完成签到,获得积分10
1秒前
2秒前
gloooow完成签到 ,获得积分10
2秒前
三十完成签到,获得积分20
4秒前
4秒前
5秒前
6秒前
hhw发布了新的文献求助10
6秒前
研友_VZG7GZ应助星空采纳,获得10
7秒前
7秒前
7秒前
8秒前
8秒前
达鸟啊完成签到,获得积分10
8秒前
8秒前
三十发布了新的文献求助10
9秒前
斯文败类应助dabai采纳,获得10
9秒前
小火苗发布了新的文献求助10
10秒前
小小橙发布了新的文献求助10
10秒前
12秒前
澡雪发布了新的文献求助10
12秒前
伶俐绮发布了新的文献求助10
12秒前
安详的自中完成签到,获得积分10
13秒前
shuiliuyuzai完成签到,获得积分10
13秒前
仿生人发布了新的文献求助10
14秒前
14秒前
Sunrising发布了新的文献求助10
15秒前
田様应助淡然的小萱采纳,获得10
15秒前
15秒前
书生发布了新的文献求助10
16秒前
16秒前
17秒前
Wenson发布了新的文献求助10
18秒前
tututu发布了新的文献求助30
18秒前
19秒前
3120221053完成签到,获得积分10
19秒前
20秒前
巧克力蛋仔完成签到 ,获得积分10
22秒前
dabai发布了新的文献求助10
22秒前
rym完成签到 ,获得积分10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976058
求助须知:如何正确求助?哪些是违规求助? 3520294
关于积分的说明 11202245
捐赠科研通 3256804
什么是DOI,文献DOI怎么找? 1798471
邀请新用户注册赠送积分活动 877610
科研通“疑难数据库(出版商)”最低求助积分说明 806496