亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prognostic prediction using a gene signature developed based on exhausted T cells for liver cancer patients

比例危险模型 Lasso(编程语言) 肝细胞癌 接收机工作特性 单变量 基因 列线图 免疫系统 生物 计算生物学 多元统计 肿瘤科 癌症研究 医学 免疫学 计算机科学 内科学 遗传学 机器学习 万维网
作者
Yu Zhou,Wanrui Wu,Wei Cai,Dong Zhang,Weiwei Zhang,Yunling Luo,Fujing Cai,Zhenjing Shi
出处
期刊:Heliyon [Elsevier]
卷期号:10 (6): e28156-e28156 被引量:1
标识
DOI:10.1016/j.heliyon.2024.e28156
摘要

Abstract

Background

Liver hepatocellular carcinoma (LIHC) is a solid primary malignancy with poor prognosis. This study discovered key prognostic genes based on T cell exhaustion and used them to develop a prognostic prediction model for LIHC.

Methods

SingleR's annotations combined with Seurat was used to automatically annotate the single-cell clustering results of the LIHC dataset GSE166635 downloaded from the Gene Expression Omnibus (GEO) database and to identify clusters related to exhausted T cells. Patients were classified using ConsensusClusterPlus package. Next, weighted gene co-expression network analysis (WGCNA) package was employed to distinguish key gene module, based on which least absolute shrinkage and selection operator (Lasso) and multi/univariate cox analysis were performed to construct a RiskScore system. Kaplan-Meier (KM) analysis and receiver operating characteristic curve (ROC) were employed to evaluate the efficacy of the model. To further optimize the risk model, a nomogram capable of predicting immune infiltration and immunotherapy sensitivity in different risk groups was developed. Expressions of genes were measured by quantitative real-time polymerase chain reaction (qRT-PCR), and immunofluorescence and Cell Counting Kit-8 (CCK-8) were performed for analyzing cell functions.

Results

We obtained 18,413 cells and clustered them into 7 immune and non-immune cell subpopulations. Based on highly variable genes among T cell exhaustion clusters, 3 molecular subtypes (C1, C2 and C3) of LIHC were defined, with C3 subtype showing the highest score of exhausted T cells and a poor prognosis. The Lasso and multivariate cox analysis selected 7 risk genes from the green module, which were closely associated with the C3 subtype. All the patients were divided into low- and high-risk groups based on the medium value of RiskScore, and we found that high-risk patients had higher immune infiltration and immune escape and poorer prognosis. The nomogram exhibited a strong performance for predicting long-term LIHC prognosis. In vitro experiments revealed that the 7 risk genes all had a higher expression in HCC cells, and that both liver HCC cell numbers and cell viability were reduced by knocking down MMP-9.

Conclusion

We developed a RiskScore model for predicting LIHC prognosis based on the scRNA-seq and RNA-seq data. The RiskScore as an independent prognostic factor could improve the clinical treatment for LIHC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
嘿嘿完成签到 ,获得积分10
14秒前
完美世界应助科研通管家采纳,获得10
22秒前
NexusExplorer应助科研通管家采纳,获得10
22秒前
38秒前
1分钟前
liuyuannzhuo发布了新的文献求助10
1分钟前
1分钟前
DayFu完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
liuyuannzhuo发布了新的文献求助10
1分钟前
2分钟前
CQU科研萌新完成签到,获得积分10
2分钟前
隐形曼青应助CQU科研萌新采纳,获得10
2分钟前
Singularity应助tlx采纳,获得20
2分钟前
2分钟前
上官若男应助执着夏山采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
充电宝应助执着夏山采纳,获得10
3分钟前
3分钟前
4分钟前
良辰应助科研通管家采纳,获得10
4分钟前
4分钟前
甜蜜发带完成签到 ,获得积分10
4分钟前
5分钟前
执着夏山发布了新的文献求助10
5分钟前
5分钟前
一墨完成签到,获得积分10
5分钟前
5分钟前
清爽夜雪完成签到,获得积分10
5分钟前
从容栾发布了新的文献求助10
5分钟前
科研搬运工完成签到,获得积分10
5分钟前
无花果应助Demi_Ming采纳,获得10
6分钟前
6分钟前
脑洞疼应助科研通管家采纳,获得10
6分钟前
良辰应助科研通管家采纳,获得10
6分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146739
求助须知:如何正确求助?哪些是违规求助? 2798061
关于积分的说明 7826588
捐赠科研通 2454566
什么是DOI,文献DOI怎么找? 1306394
科研通“疑难数据库(出版商)”最低求助积分说明 627708
版权声明 601527