A Real-to-Sim-to-Real Approach for Vision-Based Autonomous MAV-Catching-MAV

计算机视觉 计算机科学 人工智能
作者
Zian Ning,Yin Zhang,Xiaofeng Lin,Shiyu Zhao
出处
期刊:Unmanned Systems [World Scientific]
卷期号:12 (04): 787-798 被引量:1
标识
DOI:10.1142/s2301385025500360
摘要

This paper studies the task of vision-based MAV-catching-MAV, where a catcher MAV (micro aerial vehicle) can detect, localize, and pursue a target MAV autonomously. Since it is challenging to develop detectors that can effectively detect unseen MAVs in complex environments, the main novelty of this paper is to propose a real-to-sim-to-real approach to address this challenge. In this method, images of real-world environments are first collected. Then, these images are used to construct a high-fidelity simulation environment, based on which a deep-learning detector is trained. The merit of this approach is that it allows efficient automatic collection of large-scale and high-quality labeled datasets. More importantly, since the simulation environment is constructed from real-world images, this approach can effectively bridge the sim-to-real gap, enabling efficient deployment in real environments. Another contribution of this paper lies in the successful implementation of a fully autonomous vision-based MAV-catching-MAV system including proposed estimation and pursuit control algorithms. While the previous works mainly focused on certain aspects of this system, we developed a completely autonomous system that integrates detection, estimation, and control algorithms on real-world robotic platforms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
只爱三十四画完成签到,获得积分10
刚刚
笨鸟先飞发布了新的文献求助10
1秒前
刘成完成签到,获得积分10
5秒前
mike2012完成签到 ,获得积分10
5秒前
lilac完成签到,获得积分10
6秒前
七子完成签到,获得积分10
9秒前
淡淡的宝莹完成签到,获得积分10
10秒前
zzx396完成签到,获得积分0
11秒前
11秒前
南桥枝完成签到 ,获得积分10
11秒前
LiSiyi完成签到 ,获得积分10
14秒前
Muhi完成签到,获得积分10
15秒前
情怀应助科研通管家采纳,获得10
15秒前
15秒前
momo应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
南宫应助科研通管家采纳,获得10
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
1111111111应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
正己化人应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
Hanoi347应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
吕健应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
墨痕mohen完成签到,获得积分0
16秒前
福福发布了新的文献求助10
16秒前
大脸猫完成签到 ,获得积分10
21秒前
学术牛马完成签到,获得积分10
25秒前
thchiang完成签到 ,获得积分10
25秒前
科研通AI2S应助温暖的夏波采纳,获得10
27秒前
易安完成签到,获得积分10
31秒前
福福完成签到,获得积分10
31秒前
Valrhona完成签到 ,获得积分10
32秒前
虚心恋风完成签到 ,获得积分10
33秒前
微笑的巧蕊完成签到 ,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498664
求助须知:如何正确求助?哪些是违规求助? 4595831
关于积分的说明 14449958
捐赠科研通 4528777
什么是DOI,文献DOI怎么找? 2481732
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438563