A gender recognition method based on EEG microstates

地方政府 脑电图 计算机科学 人工智能 模式识别(心理学) 聚类分析 神经生理学 机器学习 心理学 神经科学
作者
Yanxiang Niu,Xin Chen,Yuansen Chen,Zixuan Yao,Xuemei Chen,Ziquan Liu,Xiangyan Meng,Yanqing Liu,Zongya Zhao,Haojun Fan
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:173: 108366-108366 被引量:6
标识
DOI:10.1016/j.compbiomed.2024.108366
摘要

Gender carries important information related to male and female characteristics, and a large number of studies have attempted to use physiological measurement methods for gender classification. Although previous studies have shown that there exist statistical differences in some Electroencephalographic (EEG) microstate parameters between males and females, it is still unknown that whether these microstate parameters can be used as potential biomarkers for gender classification based on machine learning. We used two independent resting-state EEG datasets: the first dataset included 74 females and matched 74 males, and the second one included 42 males and matched 42 females. EEG microstate analysis based on modified k-means clustering method was applied, and temporal parameter and nonlinear characteristics (sample entropy and Lempel–Ziv complexity) of EEG microstate sequences were extracted to compare between males and females. More importantly, these microstate temporal parameters and complexity were tried to train six machine learning methods for gender classification. We obtained five common microstates for each dataset and each group. Compared with the male group, the female group has significantly higher temporal parameters of microstate B, C, E and lower temporal parameters of microstate A and D, and higher complexity of microstate sequence. When using combination of microstate temporal parameters and complexity or only microstate temporal parameters as classification features in an independent test set (the second dataset), we achieved 95.2% classification accuracy. Our research findings indicate that the dynamics of microstate have considerable Gender-specific alteration. EEG microstates can be used as neurophysiological biomarkers for gender classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
qzj发布了新的文献求助10
6秒前
直率香寒发布了新的文献求助10
6秒前
zvv完成签到,获得积分20
8秒前
共享精神应助tom采纳,获得10
8秒前
无处不在发布了新的文献求助10
9秒前
Sylvia完成签到,获得积分10
9秒前
Ada完成签到,获得积分10
9秒前
9秒前
Mint发布了新的文献求助10
9秒前
科研通AI2S应助星期八采纳,获得10
11秒前
justsoso完成签到 ,获得积分10
11秒前
13秒前
手拿大炮完成签到,获得积分10
14秒前
李爱国应助顺心的谷冬采纳,获得10
16秒前
16秒前
17秒前
17秒前
qikuo完成签到,获得积分10
19秒前
大白小杨发布了新的文献求助10
19秒前
李爱国应助12345678采纳,获得10
20秒前
完美世界应助海海采纳,获得10
20秒前
KerwinYang发布了新的文献求助30
20秒前
李爱国应助拼搏惜金采纳,获得10
21秒前
无处不在完成签到 ,获得积分10
21秒前
21秒前
23秒前
w。发布了新的文献求助10
23秒前
星期八发布了新的文献求助10
23秒前
25秒前
25秒前
26秒前
27秒前
烟花应助Jie采纳,获得30
27秒前
NexusExplorer应助lwh采纳,获得10
27秒前
沈婉婉完成签到,获得积分10
30秒前
kokoka发布了新的文献求助10
31秒前
Mitochondrion发布了新的文献求助10
31秒前
Crystal完成签到,获得积分10
32秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3489201
求助须知:如何正确求助?哪些是违规求助? 3076528
关于积分的说明 9145590
捐赠科研通 2768799
什么是DOI,文献DOI怎么找? 1519439
邀请新用户注册赠送积分活动 703814
科研通“疑难数据库(出版商)”最低求助积分说明 702024