Power Grid Structure Performance Evaluation Based on Complex Network Cascade Failure Analysis

级联故障 加权 复杂网络 计算机科学 可靠性工程 网络拓扑 网格 电力系统 可靠性(半导体) 分布式计算 级联 聚类分析 拓扑(电路) 聚类系数 功率(物理) 数据挖掘 工程类 人工智能 计算机网络 数学 医学 物理 几何学 电气工程 量子力学 化学工程 万维网 放射科
作者
Di Zhang,Limin Jia,Ning Jin,Yujiang Ye,Hao Sun,Ruifeng Shi
出处
期刊:Energies [MDPI AG]
卷期号:16 (2): 990-990 被引量:10
标识
DOI:10.3390/en16020990
摘要

A safe and stable operation power system is very important for the maintenance of national industrial security and social economy. However, with the increasing complexity of the power grid topology and its operation, new challenges in estimating and evaluating the grid structure performance have received significant attention. Complex network theory transfers the power grid to a network with nodes and links, which helps evaluate the system conveniently with a global view. In this paper, we employ the complex network method to address the cascade failure process and grid structure performance assessment simultaneously. Firstly, a grid cascade failure model based on network topology and power system characteristics is constructed. Then, a set of performance evaluation indicators, including invulnerability, reliability, and vulnerability, is proposed based on the actual functional properties of the grid by renewing the power-weighted degree, medium, and clustering coefficients according to the network cascade failure. Finally, a comprehensive network performance evaluation index, which combines the invulnerability, reliability, and vulnerability indicators with an entropy-based objective weighting method, is put forward in this study. In order to confirm the approach’s efficacy, an IEEE-30 bus system is employed for a case study. Numerical results show that the weighted integrated index with a functional network could better evaluate the power grid performance than the unweighted index with a topology network, which demonstrates and validates the effectiveness of the method proposed in this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4399com应助lee采纳,获得10
1秒前
两院候选人应助lee采纳,获得10
1秒前
hbu123应助lee采纳,获得10
1秒前
2秒前
勤奋的PRUNUS完成签到,获得积分10
2秒前
2秒前
搜集达人应助lili采纳,获得10
3秒前
bella完成签到,获得积分10
3秒前
在水一方应助lin采纳,获得10
3秒前
step_stone应助豆腐布丁采纳,获得30
4秒前
4秒前
4秒前
泡芙发布了新的文献求助10
4秒前
weiwei完成签到,获得积分10
5秒前
是木易呀应助田兆文采纳,获得10
5秒前
科研通AI2S应助李欣华采纳,获得10
5秒前
FashionBoy应助若眠采纳,获得10
6秒前
冷艳宛白完成签到,获得积分10
6秒前
Allonz完成签到,获得积分10
7秒前
含蓄老太发布了新的文献求助10
7秒前
热情的明轩完成签到,获得积分10
7秒前
8秒前
8秒前
1111发布了新的文献求助10
9秒前
英俊的铭应助511采纳,获得10
9秒前
aliao发布了新的文献求助30
9秒前
俏皮芹完成签到,获得积分10
10秒前
赵先森发布了新的文献求助10
10秒前
10秒前
果汁豆浆完成签到,获得积分10
10秒前
充电宝应助绿蚁新醅酒呀采纳,获得10
12秒前
12秒前
所所应助龙猪采纳,获得10
12秒前
lalala应助direct采纳,获得20
12秒前
山复尔尔发布了新的文献求助10
13秒前
daixan89完成签到,获得积分10
14秒前
嗣音发布了新的文献求助10
15秒前
15秒前
15秒前
li完成签到,获得积分20
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307880
求助须知:如何正确求助?哪些是违规求助? 2941451
关于积分的说明 8503412
捐赠科研通 2615951
什么是DOI,文献DOI怎么找? 1429290
科研通“疑难数据库(出版商)”最低求助积分说明 663712
邀请新用户注册赠送积分活动 648671