Power Grid Structure Performance Evaluation Based on Complex Network Cascade Failure Analysis

级联故障 加权 复杂网络 计算机科学 可靠性工程 网络拓扑 网格 电力系统 可靠性(半导体) 分布式计算 级联 聚类分析 拓扑(电路) 聚类系数 功率(物理) 数据挖掘 工程类 人工智能 计算机网络 数学 医学 物理 几何学 电气工程 量子力学 化学工程 万维网 放射科
作者
Di Zhang,Limin Jia,Ning Jin,Yujiang Ye,Hao Sun,Ruifeng Shi
出处
期刊:Energies [MDPI AG]
卷期号:16 (2): 990-990 被引量:10
标识
DOI:10.3390/en16020990
摘要

A safe and stable operation power system is very important for the maintenance of national industrial security and social economy. However, with the increasing complexity of the power grid topology and its operation, new challenges in estimating and evaluating the grid structure performance have received significant attention. Complex network theory transfers the power grid to a network with nodes and links, which helps evaluate the system conveniently with a global view. In this paper, we employ the complex network method to address the cascade failure process and grid structure performance assessment simultaneously. Firstly, a grid cascade failure model based on network topology and power system characteristics is constructed. Then, a set of performance evaluation indicators, including invulnerability, reliability, and vulnerability, is proposed based on the actual functional properties of the grid by renewing the power-weighted degree, medium, and clustering coefficients according to the network cascade failure. Finally, a comprehensive network performance evaluation index, which combines the invulnerability, reliability, and vulnerability indicators with an entropy-based objective weighting method, is put forward in this study. In order to confirm the approach’s efficacy, an IEEE-30 bus system is employed for a case study. Numerical results show that the weighted integrated index with a functional network could better evaluate the power grid performance than the unweighted index with a topology network, which demonstrates and validates the effectiveness of the method proposed in this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
Dean完成签到 ,获得积分10
1秒前
乔乔发布了新的文献求助10
1秒前
小蘑菇应助ht2025采纳,获得10
1秒前
耍酷花卷发布了新的文献求助10
2秒前
微笑如冰发布了新的文献求助10
2秒前
二二二发布了新的文献求助10
2秒前
一颗柚子完成签到,获得积分10
2秒前
abc完成签到 ,获得积分10
2秒前
PMX发布了新的文献求助10
3秒前
标致小伙发布了新的文献求助10
3秒前
joysa完成签到,获得积分10
3秒前
131343完成签到,获得积分10
3秒前
FashionBoy应助慕子采纳,获得10
4秒前
4秒前
4秒前
L龙发布了新的文献求助10
5秒前
5秒前
善学以致用应助sunwending采纳,获得10
5秒前
东郭秋凌完成签到,获得积分10
5秒前
胤宸完成签到,获得积分10
6秒前
7秒前
7秒前
hohokuz完成签到,获得积分20
7秒前
一切顺遂应助Adian采纳,获得100
7秒前
7秒前
April发布了新的文献求助20
8秒前
Huaiman发布了新的文献求助10
9秒前
科研通AI5应助转角一起走采纳,获得20
9秒前
蛋炒饭完成签到,获得积分10
10秒前
执着完成签到,获得积分10
10秒前
研友_ED5GK发布了新的文献求助10
10秒前
11秒前
绿麦盲区完成签到,获得积分10
11秒前
Yvonne发布了新的文献求助10
11秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762