MAda-Net: Model-Adaptive Deep Learning Imaging for SAR Tomography

计算机科学 解算器 深度学习 超参数 人工智能 能量(信号处理) 迭代重建 算法 计算机视觉 统计 数学 程序设计语言
作者
Yan Wang,Changhao Liu,Rui Zhu,Minkun Liu,Zegang Ding,Tao Zeng
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:5
标识
DOI:10.1109/tgrs.2023.3239405
摘要

The compressive sensing (CS)-based tomographic SAR (TomoSAR) 3-D imaging method has the shortcoming of low efficiency, mainly represented in two aspects: first, the CS solver requires iterative calculation and hence is computationally expensive; second, the CS solver needs hyperparameters’ selection, which commonly requires cost-inefficient try-and-error attempts. Recently, the iterative CS solver is suggested to be replaced by a deep learning network for a tremendous processing speed improvement. However, the existing deep-learning-based TomoSAR imaging algorithms suffer from the problem of model inadaptability, i.e., being inadaptive to the observation model and the signal energy model and hence is low accuracy. This article proposes a new model-adaptive network (MAda-Net) to implement deep-learning-based TomoSAR 3-D imaging with a much improved processing accuracy. First, a new adaptive model-solving (AMS) module is introduced to solve the problem of the observation model inconsistency between the real spatially varying one and the approximately fixed one used by the network. Second, a new adaptive threshold-activation (ATC) module is introduced to solve the problem of signal energy model inconsistency between the real backscattered echo and the simulated echo for network training. The effectiveness of the proposed method has been verified by the computer simulations and the real unmanned aerial vehicle (UAV) SAR experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助Sun采纳,获得10
刚刚
刚刚
1秒前
饶啟豪完成签到,获得积分10
1秒前
科研通AI2S应助番茄吐司采纳,获得10
2秒前
勤劳晓亦应助jin采纳,获得10
2秒前
武雨寒发布了新的文献求助10
2秒前
jasmine完成签到,获得积分10
3秒前
sensen发布了新的文献求助10
3秒前
3秒前
4秒前
破伤疯应助云宇采纳,获得10
4秒前
Lynn应助勤恳的毛衣采纳,获得10
4秒前
4秒前
Owen应助freedom313514采纳,获得10
4秒前
火星上雨珍完成签到,获得积分10
4秒前
潘潘完成签到 ,获得积分10
5秒前
5秒前
橙子发布了新的文献求助10
5秒前
赘婿应助林飞双采纳,获得20
6秒前
慕青应助lawrencewong采纳,获得10
6秒前
7秒前
___发布了新的文献求助10
7秒前
小马发布了新的文献求助10
7秒前
扶正与祛邪完成签到,获得积分10
8秒前
8秒前
今后应助幽默孤容采纳,获得30
8秒前
8R60d8应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
Singularity应助科研通管家采纳,获得20
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
Singularity应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
Singularity应助科研通管家采纳,获得20
9秒前
8R60d8应助科研通管家采纳,获得10
9秒前
SciGPT应助hunajx采纳,获得10
10秒前
研友_nv2r4n发布了新的文献求助10
11秒前
wassermelonen发布了新的文献求助10
12秒前
liyaqing完成签到,获得积分20
12秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170673
求助须知:如何正确求助?哪些是违规求助? 2821714
关于积分的说明 7936172
捐赠科研通 2482144
什么是DOI,文献DOI怎么找? 1322341
科研通“疑难数据库(出版商)”最低求助积分说明 633607
版权声明 602608